
32 SH-2A, SH2A-FPU
Software Manual

Renesas 32-Bit RISC Microcomputer
SuperH� RISC engine Family

REJ09B0051-0300
Revision Date: Jul 08, 2005
Rev. 3.00

Unknown
The revision list can be viewed directly by clicking the title page.The revision list summarizes the locations of revisions and additions.  Details should always be checked by referring to the relevant text.



Rev. 3.00  Jul 08, 2005  page ii of xiv

1. These materials are intended as a reference to assist our customers in the selection of the Renesas 
Technology Corp. product best suited to the customer's application; they do not convey any license 
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or 
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or 
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and 
algorithms represents information on products at the time of publication of these materials, and are 
subject to change by Renesas Technology Corp. without notice due to product improvements or 
other reasons.  It is therefore recommended that customers contact Renesas Technology Corp. or 
an authorized Renesas Technology Corp. product distributor for the latest product information 
before purchasing a product listed herein. 
The information described here may contain technical inaccuracies or typographical errors. 
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising 
from these inaccuracies or errors. 
Please also pay attention to information published by Renesas Technology Corp. by various means, 
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, 
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total 
system before making a final decision on the applicability of the information and products.  Renesas 
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the 
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or 
system that is used under circumstances in which human life is potentially at stake.  Please contact 
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when 
considering the use of a product contained herein for any specific purposes, such as apparatus or 
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in 
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must 
be exported under a license from the Japanese government and cannot be imported into a country 
other than the approved destination. 
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the 
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products 
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and 
more reliable, but there is always the possibility that trouble may occur with them. Trouble with 
semiconductors may lead to personal injury, fire or property damage. 
Remember to give due consideration to safety when making your circuit designs, with appropriate 
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or 
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs! 

Notes regarding these materials



Main Revisions for this Edition

Item Page Revision (See Manual for Details)

1.1   Features 1 Description amended
The SH-2A/SH2A-FPU is a 32-bit RISC (reduced instruction set
computer) microprocessor that is upward-compatible with the SH-
1, SH-2, and SH-2E at the object code level.

2.2.2   Control
Registers
(1) Status Register,
SR

5 Description amended
(32-bit,    initial value =0000 0000 0000 0000 00X0 00XX 1111
00XX)

3.1.1   Exception
Handling Types and
Priority
Table 3.1   Exception
Types and Priority

16 Note amended
Notes:  1.  Delayed branch instructions: JMP, JSR, BRA, BSR,
RTS, RTE,                        BF/S, BT/S, BSRF, BRAF                     .

3.1.2   Exception
Handling Operation
(2) Address Error,
RAM Error, Register
Bank Error, Interrupt,
or Instruction
Exception Handling

18 Description amended
⋅⋅⋅ and the vector table address offset of the interrupt exception
handling to be executed,⋅⋅⋅

3.3.1   Address Error
Sources
Table 3.5   Bus
Cycles and Address
Errors

22 Table amended
Bus Cycle

Type Bus Master Bus Cycle Operation

Address Error

Occurrence

Data

read/write

CPU or

DMAC

Double longword data accessed from double

longword boundary

No error (normal)

Double longword data accessed from other

than double longword boundary

Address error

3.6.3   Interrupt
Exception Handling

26 Description amended
⋅⋅⋅ and the vector table address offset of the interrupt exception
handling to be executed,⋅⋅⋅
Rev. 3.00  Jul 08, 2005  page iii of xiv



Item Page Revision (See Manual for Details)

4.3   Instruction
Format
Table 4.8   
Instruction Formats

45 Table amended

Instruction Formats

nid format

nnnnxxxx xxxx

32 16

x i i i

ddddxxxx dddd

15 0

dddd

5.1   Instruction Set
by Classification
Table 5.2
Instruction Code
Format

53 Table amended
Item Format Explanation

Instruction

Rm: Source register

Rn: Destination register

imm: Immediate data

disp: Displacement*
1

5.1.1   Data Transfer
Instructions
Table 5.3   Data
Transfer Instructions

56 Table amended
MOVML.L @R15+,Rn
MOVMU.L @R15+,Rn
Note: When Rn = R15, read Rn as PR

6.2   Format of
Instruction
Descriptions

76 Description amended
Register bank structure definition
(VTO: Interrupt vector table address offset)

6.3.30   RESBANK
REStore from
registerBANK
System Control
Instruction

145 Note amended
*  19 when a bank overflow has occurred and the register is
restored from the stack

6.4.21   DT
Decrement and Test
Arithmetic Instruction

196 Program listing amended
DT  R5

6.4.31   MOV
MOVe immediate
data
Data Transfer
Instruction

219 Description amended
⋅⋅⋅ The PC points to the starting address of the fourth byte after this
MOV instruction. ⋅⋅⋅ The PC points to the starting address of the
fourth byte after this MOV instruction,⋅⋅⋅
Rev. 3.00  Jul 08, 2005  page iv of xiv



Item Page Revision (See Manual for Details)

6.4.48   RTE
ReTurn from
Exception
System Control
Instruction

244 Description amended
Return from
Exception Handling                Delayed Branch Instruction

6.4.50 SETT
SET T bit
System Control
Instruction

248 Description amended
T Bit Setting

6.4.57   SLEEP
SLEEP
System Control
Instruction

257 Description amended
Transition to Power-Down Mode             .

6.5.10   FLOAT
Floating-point
convert from integer
Floating-Point
Instruction

296 Description amended
⋅⋅⋅ When FPSCR.enable.I = 1, and FPSCR.PR = 0, an FPU
exception trap is generated regardless of whether or not an
exception has occurred.⋅⋅⋅

7.1   Overview
Figure 7.1   Overview
of Register Bank
Configuration

325 Figure amended
(Before) IVO → (After) VTO
Figure notes amended
VTO: Interrupt vector table address offset

7.2.1   Banked Data 326 Description amended
⋅⋅⋅ and the interrupt vector table address offsets (VTO) are banked.

7.2.2   Register
Banks

326 Description amended
⋅⋅⋅ Register banks are stacked in first in last out (FILO) sequence.⋅⋅⋅

7.2.3   Bank Control
Registers
(2) Bank Number
Register (IBNR) (16
bit, Initial value:
H'0000)

327 Description amended
Bits 3 to 0: BN3 to BN0
⋅⋅⋅ after which the data is retrieved from the register bank. These
bits are read-only and cannot be modified.

7.3.1   Save to Bank 328 Description amended
(b) ..., and the interrupt vector table address offset (VTO) are
saved to the bank indicated by the BN, bank i.

Figure 7.2   Bank
Save Operations

328,
329

Figure amended
(Before) IVN → (After) VTO
Rev. 3.00  Jul 08, 2005  page v of xiv

Figure 7.3   Bank
Save Timing



Item Page Revision (See Manual for Details)

7.4.2   Register Bank
Addressing

330 Description amended
⋅⋅⋅ and the entry within the bank (R0 to R14, GBR, MACH, MACL,
PR, VTO) is specified by address bits 6 to 2 (EN).

Figure 7.4   Register
Bank Addressing

331 Figure amended
(Before) IVO → (After) VTO

8.2 Slots and
Pipeline Flow
Figure 8.3   
Impossible Pipeline
Flow (1)

339 Figure amended
Instruction 1       IF   ID   EX   MA   WB

8.6   Contention Due
to FPU
Figure 8.36   
Example of Use of
Result of Zero-
Latency Instruction
as Source

353 Figure amended
(Before) GX → (After) EX

8.9   Pipeline
Operations for Each
Instruction
Table 8.1   Number
of Instruction Stages
and Execution States

372 Table amended

Type Category
Number

of Stages

Execution

States
Latency Contention Instructions

4 1 2 STS MACH,RnSystem

control

instructions

MAC →
register

transfer

instructions

• These instruc-

tions use the

multiplication

result read path.

STS MACL,Rn

Appendix A   SH-
2A/SH2A-FPU
Parallel Execution

480,
481

Table amended
Classifi-

cation of

First

Instruction

Classifi-

cation of

Second

Instruction

Instruction

MW MW STC.L VBR,@-Rn STS.L PR,@-Rn

EX EX SUBC Rm,Rn SUBV Rm,Rn TST #imm,R0

BR MR JSR/N @@(disp8,TBR)
Rev. 3.00  Jul 08, 2005  page vi of xiv



Rev. 3.00  Jul 08, 2005  page vii of xiv

Contents

Section 1   Overview............................................................................................................. 1
1.1 Features............................................................................................................................. 1

Section 2   Programming Model........................................................................................ 3
2.1 Data Formats..................................................................................................................... 3
2.2 Register Configuration...................................................................................................... 3

2.2.1 General Registers................................................................................................. 3
2.2.2 Control Registers ................................................................................................. 5
2.2.3 System Registers.................................................................................................. 6
2.2.4 Floating-Point Registers ...................................................................................... 7
2.2.5 Floating-Point System Registers.......................................................................... 8
2.2.6 Register Banks..................................................................................................... 10
2.2.7 Register Initial Values ......................................................................................... 10

2.3 Data Formats..................................................................................................................... 11
2.3.1 Data Format in Registers ..................................................................................... 11
2.3.2 Data Formats in Memory..................................................................................... 11
2.3.3 Immediate Data Format ....................................................................................... 12

2.4 Processing States .............................................................................................................. 13

Section 3   Exception Handling ......................................................................................... 15
3.1 Overview .......................................................................................................................... 15

3.1.1 Exception Handling Types and Priority............................................................... 15
3.1.2 Exception Handling Operation ............................................................................ 17
3.1.3 Exception Vector Table ....................................................................................... 18

3.2 Resets................................................................................................................................ 20
3.2.1 Types of Reset ..................................................................................................... 20
3.2.2 Power-On Reset ................................................................................................... 20
3.2.3 Manual Reset ....................................................................................................... 21

3.3 Address Errors .................................................................................................................. 22
3.3.1 Address Error Sources ......................................................................................... 22
3.3.2 Address Error Exception Handling...................................................................... 23

3.4 RAM Errors ...................................................................................................................... 23
3.4.1 RAM Error Sources ............................................................................................. 23
3.4.2 RAM Error Exception Handling.......................................................................... 23

3.5 Register Bank Errors......................................................................................................... 24
3.5.1 Register Bank Error Sources................................................................................ 24
3.5.2 Register Bank Error Exception Handling ............................................................ 24

3.6 Interrupts........................................................................................................................... 25



Rev. 3.00  Jul 08, 2005  page viii of xiv

3.6.1 Interrupt Sources.................................................................................................. 25
3.6.2 Interrupt Priority .................................................................................................. 25
3.6.3 Interrupt Exception Handling .............................................................................. 26

3.7 Instruction Exceptions ...................................................................................................... 27
3.7.1 Types of Instruction Exception............................................................................ 27
3.7.2 Trap Instruction ................................................................................................... 28
3.7.3 Slot Illegal Instructions........................................................................................ 28
3.7.4 General Illegal Instructions.................................................................................. 29
3.7.5 Integer Division Instructions ............................................................................... 29
3.7.6 Floating-Point Operation Instructions.................................................................. 29

3.8 Cases in Which Exceptions Are Not Accepted................................................................. 30
3.9 Stack Status after Exception Handling.............................................................................. 31
3.10 Usage Notes ...................................................................................................................... 32

3.10.1 Stack Pointer (SP) Value ..................................................................................... 32
3.10.2 Vector Base Register (VBR) Value ..................................................................... 32
3.10.3 Address Errors Occurring in Address Error Exception Handling Stacking......... 32

Section 4   Instruction Features ......................................................................................... 33
4.1 RISC-Type Instruction Set................................................................................................ 33
4.2 Addressing Modes ............................................................................................................ 37
4.3 Instruction Format............................................................................................................. 41

Section 5   Instruction Set.................................................................................................... 47
5.1 Instruction Set by Classification ....................................................................................... 47

5.1.1 Data Transfer Instructions ................................................................................... 54
5.1.2 Arithmetic Operation Instructions ....................................................................... 58
5.1.3 Logic Operation Instructions ............................................................................... 61
5.1.4 Shift Instructions.................................................................................................. 62
5.1.5 Branch Instructions.............................................................................................. 63
5.1.6 System Control Instructions................................................................................. 64
5.1.7 Floating-Point Instructions .................................................................................. 66
5.1.8 FPU-Related CPU Instructions............................................................................ 68
5.1.9 Bit Manipulation Instructions .............................................................................. 69

Section 6   Instruction Descriptions.................................................................................. 71
6.1 Overview of New Instructions .......................................................................................... 71
6.2 Format of Instruction Descriptions ................................................................................... 75
6.3 New Instructions ............................................................................................................... 88

6.3.1 BAND......... Bit AND ...................................... Bit Manipulation Instruction ... 88
6.3.2 BANDNOT Bit ANDNOT .............................. Bit Manipulation Instruction ... 90
6.3.3 BCLR ......... Bit CLeaR .................................... Bit Manipulation Instruction ... 92



Rev. 3.00  Jul 08, 2005  page ix of xiv

6.3.4 BLD ........... Bit LoaD ...................................... Bit Manipulation Instruction ... 94
6.3.5 BLDNOT ... Bit LoaDNOT .............................. Bit Manipulation Instruction ... 96
6.3.6 BOR ........... Bit OR ......................................... Bit Manipulation Instruction ... 98
6.3.7 BORNOT ... Bit ORNOT ................................. Bit Manipulation Instruction ... 100
6.3.8 BSET ......... Bit SET ........................................ Bit Manipulation Instruction ... 102
6.3.9 BST ............ Bit STore ..................................... Bit Manipulation Instruction ... 104
6.3.10 BXOR ........ Bit exclusive OR ......................... Bit Manipulation Instruction ... 106
6.3.11 CLIPS ........ CLIP as Signed ............................ Arithmetic Instruction ............. 108
6.3.12 CLIPU ........ CLIP as Unsigned ........................ Arithmetic Instruction ............. 111
6.3.13 DIVS .......... DIVide as Signed ........................ Arithmetic Instruction ............. 113
6.3.14 DIVU ......... DIVide as Unsigned .................... Arithmetic Instruction ............. 114
6.3.15 FMOV ........ Floating-point MOVe .................. Floating-Point Instruction........ 115
6.3.16 JSR/N ......... Jump to SubRoutine with No delay slot

...................................................... Branch Instruction ................... 118
6.3.17 LDBANK ... LoaD register BANK .................. System Control Instruction...... 121
6.3.18 LDC ........... LoaD to Control register ............. System Control Instruction...... 123
6.3.19 MOV .......... MOVe structure data ................... Data Transfer Instruction......... 124
6.3.20 MOV .......... MOVe reverse stack .................... Data Transfer Instruction......... 127
6.3.21 MOVI20 .... MOVe Immediate 20bits data ..... Data Transfer Instruction......... 130
6.3.22 MOVI20S .. MOVe Immediate 20bits data and 8bits Shift left

...................................................... Data Transfer Instruction......... 131
6.3.23 MOVML.L MOVe Multi-register Lower part Data Transfer Instruction......... 133
6.3.24 MOVMU.L MOVe Multi-register Upper part Data Transfer Instruction......... 136
6.3.25 MOVRT ..... MOVe Reverse Tbit .................... Data Transfer Instruction......... 139
6.3.26 MOVU ....... MOVe structure data as Unsigned

...................................................... Data Transfer Instruction......... 140
6.3.27 MULR ........ MULtiply to Register .................. Arithmetic Instruction ............. 142
6.3.28 NOTT ........ NOT Tbit ..................................... Data Transfer Instruction......... 143
6.3.29 PREF .......... PREFetch data to cache ............... Data Transfer Instruction......... 144
6.3.30 RESBANK  REStore from registerBANK ...... System Control Instruction...... 145
6.3.31 RTS/N ........ ReTurn from Subroutine with No delay slot

...................................................... Branch Instruction ................... 147
6.3.32 RTV/N ....... ReTurn to Value and from subroutine with No delay slot

...................................................... Branch Instruction ................... 148
6.3.33 SHAD ........ SHift Arithmetic Dynamically .... Shift Instruction....................... 150
6.3.34 SHLD ......... SHift Logical Dynamically ......... Shift Instruction....................... 152
6.3.35 STBANK ... STore register BANK .................. System Control Instruction...... 154
6.3.36 STC ............ STore Control register ................. System Control Instruction...... 156

6.4 SH-2E CPU Instructions................................................................................................... 157
6.4.1 ADD .......... ADD Binary ................................ Arithmetic Instruction ............. 157
6.4.2 ADDC ........ ADD with Carry .......................... Arithmetic Instruction ............. 158



Rev. 3.00  Jul 08, 2005  page x of xiv

6.4.3 ADDV ........ ADD with (V flag) overflow check
...................................................... Arithmetic Instruction ............. 159

6.4.4 AND .......... AND logical ................................ Logical Instruction................... 161
6.4.5 BF .............. Branch if False ............................ Branch Instruction ................... 163
6.4.6 BF/S ........... Branch if False with delay Slot ... Branch Instruction ................... 165
6.4.7 BRA ........... BRAnch ....................................... Branch Instruction ................... 167
6.4.8 BRAF ......... BRAnch Far ................................ Branch Instruction ................... 169
6.4.9 BSR ............ Branch to SubRoutine ................. Branch Instruction ................... 171
6.4.10 BSRF ......... Branch to SubRoutine Far ........... Branch Instruction ................... 173
6.4.11 BT .............. Branch if True ............................. Branch Instruction ................... 175
6.4.12 BT/S ........... Branch if True with delay Slot .... Branch Instruction ................... 177
6.4.13 CLRMAC .. CleaR MAC register .................... System Control Instruction...... 179
6.4.14 CLRT ......... CleaR T bit .................................. System Control Instruction...... 180
6.4.15 CMP/cond .. CoMPare conditionally ............... Arithmetic Instruction ............. 181
6.4.16 DIV0S ........ DIVide (step 0) as Signed ........... Arithmetic Instruction ............. 185
6.4.17 DIV0U ....... DIVide (step 0) as Unsigned ....... Arithmetic Instruction ............. 186
6.4.18 DIV1 .......... DIVide 1 step .............................. Arithmetic Instruction ............. 187
6.4.19 DMULS.L .. Double-length MULtiply as Signed

...................................................... Arithmetic Instruction ............. 192
6.4.20 DMULU.L   Double-length MULtiply as Unsigned

...................................................... Arithmetic Instruction ............. 194
6.4.21 DT .............. Decrement and Test ..................... Arithmetic Instruction ............. 196
6.4.22 EXTS ......... EXTend as Signed ....................... Arithmetic Instruction ............. 197
6.4.23 EXTU ........ EXTend as Unsigned ................... Arithmetic Instruction ............. 198
6.4.24 JMP ............ JuMP ........................................... Branch Instruction ................... 199
6.4.25 JSR ............. Jump to SubRoutine .................... Branch Instruction ................... 201
6.4.26 LDC ........... LoaD to Control register ............. System Control Instruction...... 203
6.4.27 LDS ............ LoaD to System register .............. System Control Instruction...... 205
6.4.28 MAC.L ....... Multiply and ACcumulate Long .. Arithmetic Instruction ............. 207
6.4.29 MAC.W ..... Multiply and ACcumulate Word   Arithmetic Instruction ............. 211
6.4.30 MOV .......... MOVe data .................................. Data Transfer Instruction......... 214
6.4.31 MOV .......... MOVe immediate data ................ Data Transfer Instruction......... 219
6.4.32 MOV .......... MOVe peripheral Data ................ Data Transfer Instruction......... 222
6.4.33 MOV .......... MOVe structure data ................... Data Transfer Instruction......... 225
6.4.34 MOVA ....... MOVe effective Address ............. Data Transfer Instruction......... 228
6.4.35 MOVT ....... MOVe T bit ................................. Data Transfer Instruction......... 230
6.4.36 MUL.L ....... MULtiply Long ........................... Arithmetic Instruction ............. 231
6.4.37 MULS.W ... MULtiply as Signed Word .......... Arithmetic Instruction ............. 232
6.4.38 MULU.W ... MULtiply as Unsigned Word ...... Arithmetic Instruction ............. 233
6.4.39 NEG ........... NEGate ........................................ Arithmetic Instruction ............. 234
6.4.40 NEGC ........ NEGate with Carry ...................... Arithmetic Instruction ............. 235



Rev. 3.00  Jul 08, 2005  page xi of xiv

6.4.41 NOP ........... No OPeration ............................... System Control Instruction...... 236
6.4.42 NOT ........... NOT-logical complement ............ Logical Instruction................... 237
6.4.43 OR .............. OR logical  .................................. Logical Instruction................... 238
6.4.44 ROTCL ...... ROTate with Carry Left .............. Shift Instruction....................... 240
6.4.45 ROTCR ...... ROTate with Carry Right ............ Shift Instruction....................... 241
6.4.46 ROTL ......... ROTate Left ................................ Shift Instruction....................... 242
6.4.47 ROTR ........ ROTate Right .............................. Shift Instruction....................... 243
6.4.48 RTE ............ ReTurn from Exception ............... System Control Instruction...... 244
6.4.49 RTS ............ ReTurn from Subroutine ............. Branch Instruction ................... 246
6.4.50 SETT .......... SET T bit ..................................... System Control Instruction...... 248
6.4.51 SHAL ......... SHift Arithmetic Left .................. Shift Instruction....................... 249
6.4.52 SHAR ........ SHift Arithmetic Right ................ Shift Instruction....................... 250
6.4.53 SHLL ......... SHift Logical Left ....................... Shift Instruction....................... 251
6.4.54 SHLLn ....... n bits SHift Logical Left .............. Shift Instruction....................... 252
6.4.55 SHLR ......... SHift Logical Right ..................... Shift Instruction....................... 254
6.4.56 SHLRn ....... n bits SHift Logical Right ........... Shift Instruction....................... 255
6.4.57 SLEEP ....... SLEEP ......................................... System Control Instruction...... 257
6.4.58 STC ............ STore Control register ................. System Control Instruction...... 258
6.4.59 STS ............ STore System register ................. System Control Instruction...... 260
6.4.60 SUB ........... SUBtract binary ........................... Arithmetic Instruction ............. 262
6.4.61 SUBC ......... SUBtract with Carry .................... Arithmetic Instruction ............. 263
6.4.62 SUBV ........ SUBtract with (V flag) underflow check

...................................................... Arithmetic Instruction ............. 264
6.4.63 SWAP ........ SWAP register halves .................. Data Transfer Instruction......... 266
6.4.64 TAS ............ Test And Set ................................ Logical Instruction................... 268
6.4.65 TRAPA ...... TRAP Always ............................. System Control Instruction...... 269
6.4.66 TST ............ TeST logical ................................ Logical Instruction................... 271
6.4.67 XOR ........... eXclusive OR logical .................. Logical Instruction................... 273
6.4.68 XTRCT ...... eXTRaCT .................................... Data Transfer Instruction......... 275

6.5 Floating-Point Instructions and FPU-Related CPU Instructions....................................... 276
6.5.1 FABS ......... Floating-point ABSolute value .... Floating-Point Instruction........ 276
6.5.2 FADD ........ Floating-point ADD .................... Floating-Point Instruction........ 277
6.5.3 FCMP ........ Floating-point CoMPare .............. Floating-Point Instruction........ 280
6.5.4 FCNVDS ... Floating-point CoNVert Double to Single precision

...................................................... Floating-Point Instruction........ 284
6.5.5 FCNVSD ... Floating-point CoNVert Single to Double precision

...................................................... Floating-Point Instruction........ 287
6.5.6 FDIV .......... Floating-point DIVide ................. Floating-Point Instruction........ 289
6.5.7 FLDI0 ........ Floating-point LoaD Immediate 0.0

...................................................... Floating-Point Instruction........ 293



Rev. 3.00  Jul 08, 2005  page xii of xiv

6.5.8 FLDI1 ........ Floating-point LoaD Immediate 1.0
...................................................... Floating-Point Instruction........ 294

6.5.9 FLDS ......... Floating-point LoaD to System register
...................................................... Floating-Point Instruction........ 295

6.5.10 FLOAT ...... Floating-point convert from integer
...................................................... Floating-Point Instruction........ 296

6.5.11 FMAC ........ Floating-point Multiply and ACcumulate
...................................................... Floating-Point Instruction........ 298

6.5.12 FMOV ........ Floating-point MOVe .................. Floating-Point Instruction........ 304
6.5.13 FMUL ........ Floating-point MULtiply ............. Floating-Point Instruction........ 308
6.5.14 FNEG ......... Floating-point NEGate value ....... Floating-Point Instruction........ 310
6.5.15 FSCHG ...... Sz-bit CHanGe ............................ Floating-Point Instruction........ 311
6.5.16 FSQRT ....... Floating-point SQuare RooT ....... Floating-Point Instruction........ 312
6.5.17 FSTS .......... Floating-point STore System register

...................................................... Floating-Point Instruction........ 315
6.5.18 FSUB ......... Floating-point SUBtract .............. Floating-Point Instruction........ 316
6.5.19 FTRC ......... Floating-point TRuncate and Convert to integer

...................................................... Floating-Point Instruction........ 318
6.5.20 LDS ............ LoaD to FPU System register ...... System Control Instruction...... 321
6.5.21 STS ............ STore from FPU System register  System Control Instruction...... 323

Section 7   Register Banks .................................................................................................. 325
7.1 Overview .......................................................................................................................... 325
7.2 Register Banks and Bank Control Registers ..................................................................... 326

7.2.1 Banked Data ........................................................................................................ 326
7.2.2 Register Banks..................................................................................................... 326
7.2.3 Bank Control Registers........................................................................................ 326

7.3 Bank Save and Retrieve Operations ................................................................................. 328
7.3.1 Save to Bank........................................................................................................ 328
7.3.2 Retrieve from Bank.............................................................................................. 329
7.3.3 Save and Retrieve Operations after Saving to All Banks .................................... 329

7.4 Register Bank Data Send Instructions .............................................................................. 330
7.4.1 Description of Instructions .................................................................................. 330
7.4.2 Register Bank Addressing ................................................................................... 330

7.5 Register Bank Exceptions ................................................................................................. 332
7.5.1 Register Bank Error Sources................................................................................ 332
7.5.2 Register Bank Error Exception Processing.......................................................... 332

7.6 SR Register Bank Overflow Bit (BO Bit)......................................................................... 333

Section 8   Pipeline Operation............................................................................................ 335
8.1 Basic Pipeline Configuration ............................................................................................ 335



Rev. 3.00  Jul 08, 2005  page xiii of xiv

8.2 Slots and Pipeline Flow .................................................................................................... 339
8.3 Instruction Execution and Parallel Execution Capability ................................................. 341

8.3.1 Details of Resource Contention ........................................................................... 342
8.3.2 Details of Contention Due to Wait for Result of Previously Issued Instruction .. 345
8.3.3 Details of Register Contention and Flag Contention ........................................... 345
8.3.4 Details of Contention Due to Multi-Cycle Instruction......................................... 347
8.3.5 Details of Contention Due to 32-Bit Instruction.................................................. 348
8.3.6 Details of Contention Due to Instruction that Uses FPSCR ................................ 349
8.3.7 Details of Contention Due to Branch Instruction................................................. 350

8.4 Number of Instruction Execution States ........................................................................... 351
8.5 Effect of Memory Load Instruction on Pipeline ............................................................... 352
8.6 Contention Due to FPU..................................................................................................... 353
8.7 Contention Due to Multiplier............................................................................................ 360
8.8 Programming Strategy ...................................................................................................... 364
8.9 Pipeline Operations for Each Instruction .......................................................................... 364

8.9.1 Data Transfer Instructions ................................................................................... 378
8.9.2 Arithmetic Operation Instructions ....................................................................... 390
8.9.3 Logical Operation Instructions ............................................................................ 404
8.9.4 Shift Instructions.................................................................................................. 412
8.9.5 Branch Instructions.............................................................................................. 414
8.9.6 System Control Instructions................................................................................. 422
8.9.7 Exception Handling ............................................................................................. 443
8.9.8 Floating-Point Instructions and FPU-Related CPU Instructions.......................... 448

8.10 Simple Method of Calculating Required Number of Clock Cycles.................................. 475

Appendix A   SH-2A/SH2A-FPU Parallel Execution................................................. 479

Appendix B   Programming Guidelines (Using MOVI20 and MOVI20S) .......... 483



Rev. 3.00  Jul 08, 2005  page xiv of xiv



Section 1   Overview

Rev. 3.00  Jul 08, 2005  page 1 of 484
REJ09B0051-0300

Section 1   Overview

1.1 Features

The SH-2A/SH2A-FPU is a 32-bit RISC (reduced instruction set computer) microprocessor that is
upward-compatible with the SH-1, SH-2, and SH-2E at the object code level. The SH2A-FPU has
an on-chip floating point unit and the SH-2A does not. The use of 16-bit basic instructions enables
code efficiency, performance, and ease of use to be improved.

Features of the SH-2A/SH2A-FPU are summarized in table 1.1.

Table 1.1 SH-2A/SH2A-FPU Features

Item Features

CPU • Original Renesas Technology architecture
• 32-bit internal data bus
• General-register architecture

 Sixteen 32-bit general registers
 Four 32-bit control registers
 Four 32-bit system registers
 Register banks for fast interrupt response

• RISC-type instruction set (upward-compatible with SH Series)
 Instruction length: 16-bit basic instructions for improved efficiency,

and 32-bit instructions for improved performance and ease of use
 Load-store architecture
 Delayed branch instructions
 Instruction set based on C language

• Superscalar architecture allowing simultaneous execution of two
instructions, including FPU

• Instruction execution time: Max. 2 instructions/cycle
• Address space: 4 Gbytes
• On-chip multiplier
• Five-stage pipeline
• Harvard architecture



Section 1   Overview

Rev. 3.00  Jul 08, 2005  page 2 of 484
REJ09B0051-0300

Item Features

Floating-Point Unit
(FPU)

• On-chip floating-point coprocessor
• Supports single-precision (32 bits) and double-precision (64 bits)
• Supports IEEE754-compliant data types and exceptions
• Two rounding modes: Round to Nearest and Round to Zero
• Handling of denormalized numbers: Truncation to zero
• Floating-point registers

 Sixteen 32-bit floating-point registers
(single-precision x 16 words or double-precision x 8 words)

 Two 32-bit floating-point system registers
• Supports FMAC (multiply and accumulate) instruction
• Supports FDIV (divide) and FSQRT (square root) instructions
• Supports FLDI0/FLDI1 (load constant 0/1) instructions
• Instruction execution times

 Latency (FMAC/FADD/FSUB/FMUL): 3 cycles (single-precision), 8
cycles (double-precision)

 Pitch (FMAC/FADD/FSUB/FMUL): 1 cycle (single-precision), 6
cycles (double-precision)

Note: FMAC is supported for single-precision only.
• Five-stage pipeline



Section 2   Programming Model

Rev. 3.00  Jul 08, 2005  page 3 of 484
REJ09B0051-0300

Section 2   Programming Model

2.1 Data Formats

Data formats supported by the SH-2A/SH2A-FPU are shown in figure 2.1.

Byte (8 bits)

Word (16 bits)

Longword (32 bits)

Single-precision floating-point (32 bits)

Double-precision floating-point (64 bits)

07

015

031

031 30 22

fractionexps

063 62 51

exps fraction

Figure 2.1   Data Formats

2.2 Register Configuration

2.2.1 General Registers

Figure 2.2 shows the general registers. There are 16 general registers (Rn) numbered R0 to R15,
which are 32 bits in length. General registers are used for data processing and address calculation.
R0 is also used as an index register. Several instructions use R0 as a fixed source or destination
register. R15 is used as the hardware stack pointer (SP). Saving and recovering the status register
(SR) and program counter (PC) in exception processing is accomplished by referencing the stack
using R15.



Section 2   Programming Model

Rev. 3.00  Jul 08, 2005  page 4 of 484
REJ09B0051-0300

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15, SP

31 0

R0 functions as an index register in the indirect indexed

register addressing mode and indirect indexed GBR 

addressing mode.  In some instructions, R0 functions as

a fixed source register or destination register.

R15 functions as a hardware stack pointer (SP) during

exception processing.

1.Notes:

*1

(hardware stack pointer)*2

2.

Figure 2.2   General Registers



Section 2   Programming Model

Rev. 3.00  Jul 08, 2005  page 5 of 484
REJ09B0051-0300

2.2.2 Control Registers

There are four control registers, each 32 bits in length: the status register (SR), global base register
(GBR), vector base register (VBR), and jump table base register (TBR).
The status register indicates the processing status of instructions.
The global base register is used as the base address in the GBR indirect addressing mode and to
transfer register data from on-chip peripheral modules.
The vector base register is used as the base address for the exception processing vector area,
including interrupts.
The table base register is used as the base address for the function table area.

(1)  Status Register, SR

(32-bit, initial value = 0000 0000 0000 0000 00X0 00XX 1111 00XX) (X = undefined))

31 15 14 13 12 10 9 8 7 4 3 2 1 0

� BO CS � M Q IMASK � S T

Note:   �: Reserved bits.  Always read as 0.  The write value should always be 0.

BO: Indicates that a register bank has overflowed.

CS: Indicates that, in CLIP instruction execution, the value has exceeded the saturation upper-
limit value or fallen below the saturation lower-limit value.

M, Q: Used by the DIV0S, DIV0U, and DIV1 instructions.

IMASK: Interrupt mask level

S: Specifies a saturation operation for a MAC instruction.

T: True/false condition or carry/borrow bit

(2)  Global Base Register, GBR (32-bit, initial value = undefined)

GBR is referenced as the base address in a GBR-referencing MOV instruction.

(3)  Vector Base Register, VBR (32-bit, initial value = H'0000 0000)

VBR is referenced as the branch destination base address in the event of an exception or interrupt.



Section 2   Programming Model

Rev. 3.00  Jul 08, 2005  page 6 of 484
REJ09B0051-0300

(4)  Jump Table Base Register, TBR (32-bit, initial value = undefined)

TBR is referenced as the start address of a function table located in memory in a JSR/N
@@(disp8,TBR) table referencing subroutine call instruction.

2.2.3 System Registers

System registers consist of four 32-bit registers: high and low multiply and accumulate registers
(MACH and MACL), the procedure register (PR), and the program counter (PC). The multiply
and accumulate registers store the results of multiply and multiply and accumulate operations. The
procedure register stores the return address from the subroutine procedure. The program counter
indicates the address of the program executing and controls the flow of the processing.

MACL

PR

PC

MACH

31 0

0

0

31

31

Multiply and accumulate 

register high (MACH) 

Multiply and accumulate 

register low (MACL) 

Procedure register (PR):

Stores the return address for 

a subroutine procedure.

Program counter (PC):

Indicates the fourth byte after

the current instruction.

(1) Multiply and Accumulate Register High, MACH (32-bit, initial value = undefined)
Multiply and Accumulate Register Low, MACL (32-bit, initial value = undefined)

MACH/MACL is used as the addition value in a MAC instruction, and to store the operation result
of a MAC or MUL instruction.

(2)  Procedure Register, PR (32-bit, initial value = undefined)

PR stores the return address of a subroutine call using a BSR, BSRF, or JSR instruction, and is
referenced by a subroutine return instruction (RTS).

(3)  Program Counter, PC (32-bit, initial value = value of PC in vector table)

The PC indicates the address of the instruction being executed.



Section 2   Programming Model

Rev. 3.00  Jul 08, 2005  page 7 of 484
REJ09B0051-0300

2.2.4 Floating-Point Registers

Figure 2.3 shows the floating-point registers.  There are sixteen 32-bit floating-point registers,
FPR0 to FPR15.  These sixteen registers are referenced as FR0 to FR15 and
DR0/2/4/6/8/10/12/14.  The correspondence between FPRn and the reference name is determined
by the PR bit and SZ bit in FPSCR.  See figure 2.3.

(1)  Floating-Point Registers, FPRn (16 Registers)

FPR0, FPR l, FPR2, FPR3, FPR4, FPR5, FPR6, FPR7,
FPR8, FPR9, FPR10, FPR11, FPR12, FPR13, FPR14, FPR15

(2)  Single-Precision Floating-Point Registers, FRi (16 Registers)

FR0 to FR15 are assigned to FPR0 to FPR15.

(3)  Double-Precision Floating-Point Registers or Single-Precision Floating-Point Register
Pairs, DRi (8 Registers)

A DR register is composed of two FR registers.

DR0 = (FPR0, FPR1), DR2 = (FPR2, FPR3 ),
DR4 = (FPR4, FPR5), DR6 = (FPR6, FPR7),
DR8 = (FPR8, FPR9), DR10 = (FPR10, FPR11),
DR12 = (FPR12, FPR13), DR14 = (FPR14, FPR15)



Section 2   Programming Model

Rev. 3.00  Jul 08, 2005  page 8 of 484
REJ09B0051-0300

FPR0

FPR1

FPR2

FPR3

FPR4

FPR5

FPR6

FPR7

FPR8

FPR9

FPR10

FPR11

FPR12

FPR13

FPR14

FPR15

FR0

FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13

FR14

FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

In case of transfer instruction:

In case of arithmetic/logical instruction:

FPSCR.SZ = 0

FPSCR.PR = 0

FPSCR.SZ = 1

FPSCR.PR = 1

Reference Name Register Name

Figure 2.3   Floating-Point Registers

Programming Note:

The values of FPR0 to FPR15 are undefined after a reset.

2.2.5 Floating-Point System Registers

(1)  Floating-Point Communication Register, FPUL (32-bit, initial value = undefined)

Data transfers between an FPU register and CPU register are performed via FPUL.

(2)  Floating-Point Status/Control Register, FPSCR (32-bit, initial value = H'0004 0001)

31 23 22 21 20 19 18 17 12 11 7 6 2 1 0

� QIS � SZ PR DN Cause Enable Flag RM



Section 2   Programming Model

Rev. 3.00  Jul 08, 2005  page 9 of 484
REJ09B0051-0300

QIS: sNaN is treated as qNaN or ±∞. Valid only when the V bit in the enable field of FPSCR is
set to 1.

• QIS = 0: Processed as qNaN or ±∞.
• QIS = 1: Exception generated (processed same as sNaN).

SZ: Transfer Size Mode

• SZ = 0: The data size of an FMOV instruction is 32 bits.
• SZ = 1: The data size of an FMOV instruction is a 32-bit pair (64 bits).

PR: Precision Mode

• PR = 0: Floating-point instructions are executed as single-precision operations.
• PR = 1: Floating-point instructions are executed as double-precision operations (the result of

an instruction for which double-precision is not supported is undefined).

DN: Denormalization Mode (always 1)

• DN = 1: A denormalized number is treated as zero.

Cause: FPU exception cause field
Enable: FPU exception enable field
Flag: FPU exception flag field

FPU Error
(E)

Invalid
Operation
(V)

Division
by Zero
(Z)

Overflow
(O)

Underflow
(U)

Inexact
Exception
(I)

Cause FPU exception
cause field

Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12

Enable FPU exception
enable field

None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7

Flag FPU exception
flag field

None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

When an FPU operation instruction is executed, the FPU exception cause field is initially set to 0.
When an FPU exception next occurs, the corresponding bit in the FPU exception cause field and
FPU exception flag field is set to 1.

The FPU exception flag field retains the status of an exception generated after that field was last
cleared.



Section 2   Programming Model

Rev. 3.00  Jul 08, 2005  page 10 of 484
REJ09B0051-0300

RM: Rounding Mode

RM = 00: Round to Nearest
RM = 01: Round to Zero
RM = 10: Reserved
RM = 11: Reserved

Bits 21, 23 to 31: Reserved

Note: The SH-2A does not generate an FPU error.

2.2.6 Register Banks

For the nineteen 32-bit registers comprising general registers R0 to R14, control register GBR, and
system registers MACH, MACL, and PR, high-speed register saving and restoration can be carried
out using a register bank.  Saving to the bank is performed automatically after the CPU accepts an
interrupt that uses a register bank.  Restoration from the bank is executed by issuing a RESBANK
instruction in an interrupt service routine.

For details, refer to section 7, Register Banks.

2.2.7 Register Initial Values

Table 2.1 Initial Values of Registers

Classification Register Initial Value

General registers R0�R14
R15(SP)

Undefined
SP value in the program address table

Control registers SR Bits I3�I0 are 1111 (H'F), BO, CS are 0,
reserved bits are 0, and other bits are
undefined

GBR, TBR Undefined
VBR H'00000000

System registers MACH, MACL, PR Undefined
PC Value of the program counter in the vector

address table
Floating-point registers FRR0�FRR15 Undefined
Floating-point system registers FPUL Undefined

FPSCR H'00040001



Section 2   Programming Model

Rev. 3.00  Jul 08, 2005  page 11 of 484
REJ09B0051-0300

2.3 Data Formats

2.3.1 Data Format in Registers

Register operands are always longwords (32 bits). When data in memory is loaded to a register
and the memory operand is only a byte (8 bits) or a word (16 bits), it is sign-extended into a
longword when stored into a register.

31 0

Longword

2.3.2 Data Formats in Memory

Byte, word, and longword data formats are used.  Memory can be accessed in 8-bit bytes, 16-bit
words, or 32-bit longwords.  A memory operand of fewer than 32 bits is stored in a register in
sign-extended or zero-extended form.

A word operand should be accessed starting from a word boundary (2-byte even address: address
2n), and a longword operand from a longword boundary (4-byte even address: address 4n).  If this
rule is not observed, an address error will occur.  A byte operand can be accessed from any
address.

Only big-endian byte order can be selected for the data format.

Data formats in memory are shown in figure 2.4.

31 01523 7

Byte Byte Byte Byte

WordWordAddress 2n

Address 4n Longword

Address m Address m + 2

Address m + 1 Address m + 3

Big-endian

Figure 2.4   Data Format in Memory



Section 2   Programming Model

Rev. 3.00  Jul 08, 2005  page 12 of 484
REJ09B0051-0300

2.3.3 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the MOV,
ADD, and CMP/EQ instructions is sign-extended and is handled in registers as longword data.
Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and is
handled as longword data. Consequently, AND instructions with immediate data always clear the
upper 24 bits of the destination register.

20-bit immediate data is stored in the code of a MOVI20 or MOVI20S 32-bit transfer instruction.
The MOVI20 instruction stores immediate data in the destination register in sign-extended form.
The MOVI20S instruction shifts immediate data by 8 bits in the upper direction, and stores it in
the destination register in sign-extended form.

Word or longword immediate data is not located in the instruction code but rather is stored in a
memory table. The memory table is accessed by a immediate data transfer instruction (MOV)
using the PC relative addressing mode with displacement.

Specific examples are given in 4.1, (10) Immediate Data in section 4, Instruction Features.



Section 2   Programming Model

Rev. 3.00  Jul 08, 2005  page 13 of 484
REJ09B0051-0300

2.4 Processing States

The CPU has five processing states: the reset state, exception handling state, bus-released state,
program execution state, and power-down state.  Figure 2.5 shows the state transitions.

Reset release

Power-on reset state Manual reset state

Program execution state

Bus-released state

Exception-handling state
Interrupt or DMA address error NMI or IRQ interrupt

End of exception 

handling

Bus 

request

Exception

handling

request
Bus 

requestBus

request 

cleared

Bus request 

cleared SLEEP 

instruction with 

STBY bit cleared

SLEEP 

instruction with 

STBY bit set

Power-on reset 

from any state

Manual reset 

from any state

Reset state

Power-down state

Standby input from any state

Bus request

Bus request 

cleared

Software standby modeSleep mode

Hardware standby mode

Figure 2.5   Processing State Transitions



Section 2   Programming Model

Rev. 3.00  Jul 08, 2005  page 14 of 484
REJ09B0051-0300

(1)  Reset State

In this state, the CPU is reset.  There are two kinds of reset, power-on and manual.  See the
Hardware Manual for details.

(2)  Exception Handling State

The exception handling state is a transient state that occurs when the CPU alters the normal
programming flow due to a reset, interrupt, or other exception handling source.

In the case of a reset, the CPU fetches the execution start address as the initial value of the
program counter (PC) from the exception vector table, and the initial value of the stack pointer
(SP), stores these values, branches to the start address, and begins program execution at that
address.

In the case of an interrupt, etc., the CPU references the SP and saves the PC and status register
(SR) in the stack area.  It fetches the start address of the exception service routine from the
exception vector table, branches to that address, and begins program execution.

Subsequently, the processing state is the program execution state.

(3)  Program Execution State

In the program execution state the CPU executes program instructions in the normal sequence.

(4)  Power-Down State

In the power-down state the CPU stops operating to conserve power.  Sleep mode or software
standby mode is entered by executing a SLEEP instruction.  If hardware standby input is received,
the CPU enters the hardware standby mode.

(5)  Bus-Released State

In the bus-released state, the CPU releases the bus to a device that has requested it.

Note: For information on the processing states, please refer to the hardware manual for the
product in question.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 15 of 484
REJ09B0051-0300

Section 3   Exception Handling

3.1 Overview

3.1.1 Exception Handling Types and Priority

As table 3.1 indicates, exception handling may be caused by a reset, address error, RAM error,
register bank error, interrupt, or instruction.  Exception handling is prioritized as shown in table
3.1.  If two or more exceptions occur simultaneously, they are accepted and processed in order of
priority.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 16 of 484
REJ09B0051-0300

Table 3.1 Exception Types and Priority

Exception Handling Priority

Power-on reset HighReset

Manual reset

CPU address errorAddress errors

DMAC address error

RAM errors RAM error

FPU exception

Integer division exception (division by zero)

Instructions

Integer division exception (overflow)

Bank underflowRegister bank
errors Bank overflow

NMI

User break

H-UDI

External interrupt (IRQ)

Interrupts

On-chip peripheral modules

Trap instruction (TRAPA instruction)

General illegal instruction (undefined code)

Instructions

Slot illegal instruction (undefined code (FPU instruction or FPU-
related CPU instruction in module standby status including FPU or in
product with no FPU, or register bank-related instruction*2 in product
with no register bank) located immediately after delayed branch
instruction*1, instruction that modifies PC*3, 32-bit instruction*4,
RESBANK instruction, DIVS instruction, or DIVU instruction) Low

Notes: 1. Delayed branch instructions: JMP, JSR, BRA, BSR, RTS, RTE, BF/S, BT/S, BSRF,
BRAF

2. Register bank-related instructions: RESBANK, LDBANK, STBANK
3. Instructions that modify PC: JMP, JSR, BRA, BSR, RTS, RTE, BT, BF, TRAPA, BF/S,

BT/S, BSRF, BRAF, JSR/N, RTV/N
4. 32-bit instructions: BAND.B, BANDNOT.B, BCLR.B, BLD.B, BLDNOT.B, BOR.B,

BORNOT.B, BSET.B, BST.B, BXOR.B, FMOV.S @disp12, FMOV.D @disp12,
MOV.B @disp12, MOV.W @disp12, MOV.L @disp12, MOVI20, MOVI20S, MOVU.B,
MOVU.W



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 17 of 484
REJ09B0051-0300

3.1.2 Exception Handling Operation

Table 3.2 shows the timing of detection and the start of exception handling for each exception
source.

Table 3.2 Timing of Exception Source Detection and Start of Exception Handling

Exception Handling Exception Source Detection and Start of Exception Handling

Power-on reset Started by detection of power-on reset conditionReset

Manual reset Started by detection of manual reset condition

Address error

RAM error

Interrupt

Detected when instruction is decoded; exception handling is
started after completion of currently executing instruction

Register
bank error

Bank underflow Started upon attempted execution of RESBANK instruction when
save has not been performed to register bank

Bank overflow Started when save has already been performed to all register
bank areas when acceptance of register overflow exception has
been set by interrupt controller, and interrupt that uses register
bank is generated and accepted by CPU

Instruction Trap instruction Started by execution of TRAPA instruction

General illegal
instruction

Started when undefined code (FPU instruction or FPU-related
CPU instruction in module standby status including FPU or in
product with no FPU, or register bank-related instruction in
product with no register bank) not immediately following delayed
branch instruction (delay slot) is decoded

Slot illegal
instruction

Started when undefined code (FPU instruction or FPU-related
CPU instruction in module standby status including FPU or in
product with no FPU, or register bank-related instruction in
product with no register bank) not immediately following delayed
branch instruction (delay slot), instruction that modifies PC, 32-bit
instruction, RESBANK instruction, DIVS instruction, or DIVU
instruction is decoded

Integer division
instruction

Started upon detection of division-by-zero exception or overflow
exception caused by dividing negative maximum value
(H�80000000) by �1

Floating-point
operation
instruction

Started by floating-point operation instruction invalid operation
exception (stipulated by IEEE754), or overflow, underflow, or
imprecision interrupt.  Also started when qNaN or ±∞ is input to a
floating-point operation instruction source



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 18 of 484
REJ09B0051-0300

When exception handling is initiated, the CPU operates as follows.

(1) Reset Exception Handling

The initial values of the program counter (PC) and stack pointer (SP) are fetched from the
exception vector table (addresses H'00000000 and H'00000004 in the case of a power-on reset,
and addresses H'00000008 and H'0000000C in the case of a manual reset).  See section 3.1.3,
Exception Vector Table, for details of the exception vector table.  Next, the vector base register is
cleared to H'00000000, the interrupt mask bits (I3 to I0) in the status register (SR) are set to (H'F)
(1111), and the BO and CS bits are initialized to 0.  The BN bit in IBNR of INTC is also
initialized to 0. In addition, in products with an FPU, FPSCR is initialized to H'00040001.
Program execution starts from the PC address fetched from the exception vector table.

(2) Address Error, RAM Error, Register Bank Error, Interrupt, or Instruction Exception
Handling

SR and PC are saved on the stack indicated by R15.  In interrupt exception handling other than
NMI and UBC, when register bank use has been set, general registers R0 to R14, control register
GBR, system registers MACH, MACL, and PR, and the vector table address offset of the interrupt
exception handling to be executed, are saved to the register bank.  In the case of exception
handling due to an address error, RAM error, register bank error, NMI interrupt or UBC interrupt,
saving to a register bank is not performed.  Also, when saving is performed to all register banks,
automatic saving to the stack is performed instead of register bank saving.  In this case, an
interrupt controller setting must have been made for register bank overflow exceptions not to be
accepted.  If a setting has been made for register bank overflow exceptions to be accepted, a
register bank overflow exception will be generated.  In the case of interrupt exception handling,
the interrupt priority level is written to the interrupt mask bits (I3 to I0) in SR.  In address error,
RAM error, and instruction exception handling, bits I3 to I0 are not affected.  Next, the start
address is fetched from the exception vector table and program execution is started from that
address.

3.1.3 Exception Vector Table

Before exception handling is executed, the exception vector table must have been set up in
memory.  The exception vector table holds the start addresses of the exception service routines
(the reset exception handling table holds the initial values of PC and SP).

A different vector number and vector table address offset are assigned to each exception source.
The vector table address is calculated from the corresponding vector number and vector table
address offset.  In exception handling, the start address of the exception service routine is fetched
from the exception vector table entry indicated by this vector table address.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 19 of 484
REJ09B0051-0300

The vector numbers and vector table address offsets are shown in table 3.3, and the method of
calculating the vector table address in table 3.4.

Table 3.3 Exception Vector Table

Exception Source Vector Number Vector Table Address Offset

Power-on reset PC 0 H'00000000 to H'00000003
SP 1 H'00000004 to H'00000007

Manual reset PC 2 H'00000008 to H'0000000B
SP 3 H'0000000C to H'0000000F

General illegal instruction 4 H'00000010 to H'00000013
RAM error 5 H'00000014 to H'00000017
Slot illegal instruction 6 H'00000018 to H'0000001B
(Reserved for system) 7 H'0000001C to H'0000001F

8 H'00000020 to H'00000023
CPU address error 9 H'00000024 to H'00000027
DMAC address error 10 H'00000028 to H'0000002B
Interrupt NMI 11 H'0000002C to H'0000002F

User break 12 H'00000030 to H'00000033
FPU exception 13 H'00000034 to H'00000037
H-UDI 14 H'00000038to H'0000003B
Bank overflow 15 H'0000003C to H'0000003F
Bank underflow 16 H'00000040 to H'00000043
Integer division exception
(division by zero)

17 H'00000044 to H'00000047

Integer division exception (overflow) 18 H'00000048 to H'0000004B
(Reserved for system) 19

  �
31

H'0000004C to H'0000004F
�

H'0000007C to H'0000007F
Trap instruction (user vector) 32

  �
63

H'00000080 to H'00000083
�

H'000000FC to H'000000FF
External interrupt (IRQ), on-chip
peripheral module*

64
  �
511

H'00000100 to H'00000103
�

H'000007FC to H'000007FF
Note: * For the vector numbers and address offsets of external interrupts and on-chip peripheral

module interrupts, see �Internal Module Interrupt Exception Handling Vectors and Priority
Order� in the Interrupt Controller section of the hardware manual.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 20 of 484
REJ09B0051-0300

Table 3.4 Exception Vector Table Address Calculation

Exception Source Vector Table Address Calculation

Reset Vector table address = (vector table address offset)
= (vector number) × 4

Address error, RAM error,
register bank error, interrupt,
instruction

Vector table address = VBR + (vector table address offset)
= VBR + (vector number) × 4

Note: VBR: Vector base register
Vector table address offset: See table 3.3.
Vector number: See table 3.3.

3.2 Resets

3.2.1 Types of Reset

A reset is the highest-priority exception handling source.  There are two types of reset: a power-on
reset and a manual reset.  The CPU state is initialized by both a power-on reset and a manual reset.
The FPU state is initialized by a power-on reset, but not by a manual reset.  Refer to the hardware
manual of the relevant product for information on the states of on-chip peripheral modules, the
PFC, and I/O ports.

3.2.2 Power-On Reset

When a power-on reset condition is detected, the chip enters the power-on reset state.  See
�Power-On Reset� in the Exception Handling section of the hardware manual for the relevant
product for details of power-on reset conditions.

When the power-on reset state is released, power-on reset exception handling is started.  CPU
operations are as follows.

1. The initial value of the program counter (PC) (i.e. the execution start address) is fetched from
the exception vector table.

2. The initial value of the stack pointer (SP) is fetched from the exception vector table.
3. The vector base register (VBR) is cleared to H'00000000, the interrupt mask bits (I3 to I0) in

the status register (SR) are set to (H'F) (1111), and the BO and CS bits are initialized to 0. The
BN bit in IBNR of INTC is also initialized to 0. In addition, in products with an FPU, FPSCR
is initialized to H'00040001.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 21 of 484
REJ09B0051-0300

4. The values fetched from the exception vector table are set in the program counter (PC) and
stack pointer (SP), and program execution is started.

Power-on reset processing must always be executed when the system is powered on.

3.2.3 Manual Reset

When a manual reset condition is detected, the chip enters the manual reset state.  See �Manual
Reset� in the Exception Handling section of the hardware manual for the relevant product for
details of manual reset conditions.

When the manual reset state is released, manual reset exception handling is started.  CPU
operations are as follows.

1. The initial value of the program counter (PC) (i.e. the execution start address) is fetched from
the exception vector table.

2. The initial value of the stack pointer (SP) is fetched from the exception vector table.
3. The vector base register (VBR) is cleared to H'00000000, the interrupt mask bits (I3 to I0) in

the status register (SR) are set to (H'F) (1111), and the BO and CS bits are initialized to 0. The
BN bit in IBNR of INTC is also initialized to 0.

4. The values fetched from the exception vector table are set in the program counter (PC) and
stack pointer (SP), and program execution is started.

When a manual reset occurs, the bus cycle is held.  If a manual reset occurs while the bus is
released or during a DMAC burst transfer, manual reset exception handling is held pending until
the CPU acquires the bus.  However, if the interval from occurrence of a manual reset until the end
of a bus cycle exceeds a given number of cycles, the internal manual reset source is not held
pending but is ignored, and manual reset exception handling is not performed.  See �Manual
Reset� in the Exception Handling section of the hardware manual for the relevant product for
details.

A manual reset initializes the CPU and the BN bit in IBNR of the INTC. The FPU and other
modules are not initialized.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 22 of 484
REJ09B0051-0300

3.3 Address Errors

3.3.1 Address Error Sources

Address errors occur in instruction fetches and data read/write accesses, as shown in table 3.5.

Table 3.5 Bus Cycles and Address Errors

Bus Cycle

Type Bus Master Bus Cycle Operation
Address Error
Occurrence

Instruction fetched from even address No error (normal)Instruction
fetch

CPU

Instruction fetched from odd address Address error

Instruction fetched from other than on-chip
peripheral module space*

No error (normal)

Instruction fetched from on-chip peripheral
module space*

Address error

Instruction fetched from external memory
space in single-chip mode

Address error

Word data accessed from even address No error (normal)Data
read/write

CPU or
DMAC Word data accessed from odd address Address error

Longword data accessed from longword
boundary

No error (normal)

Longword data accessed from other than
longword boundary

Address error

Double longword data accessed from double
longword boundary

No error (normal)

Double longword data accessed from other
than double longword boundary

Address error

Word data or byte data accessed in on-chip
peripheral module space*

No error (normal)

Longword data accessed in 16-bit on-chip
peripheral module space*

No error (normal)

Longword data accessed in 8-bit on-chip
peripheral module space*

No error (normal)

External memory space accessed in single-
chip mode

Address error

Note: * For details of the on-chip peripheral module space, see the Bus State Controller section of
the hardware manual for the relevant product.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 23 of 484
REJ09B0051-0300

3.3.2 Address Error Exception Handling

When an address error occurs, address error exception handling is started after the end of the bus
cycle in which the address error occurred and completion of the currently executing instruction.
CPU operations are as follows.

1. The start address of the exception service routine corresponding to the address error is fetched
from the exception handling vector table.

2. The status register (SR) is saved on the stack.
3. The program counter (PC) is saved on the stack. The saved PC value is the start address of the

instruction following the last instruction executed.
4. Execution jumps to the address fetched from the exception handling vector table and program

execution commences. The jump is not a delayed branch.

3.4 RAM Errors

3.4.1 RAM Error Sources

A RAM error occurs in the event of a software error in an on-chip RAM read access.  For details,
see �RAM Errors� in the Exception Handling section of the hardware manual for the relevant
product.

3.4.2 RAM Error Exception Handling

When a RAM error occurs, RAM error exception handling is started after the end of the bus cycle
in which the error occurred and completion of the currently executing instruction.  CPU operations
are as follows.

1. The start address of the exception service routine corresponding to the RAM error is fetched
from the exception handling vector table.

2. The status register (SR) is saved on the stack.
3. The program counter (PC) is saved on the stack. The saved PC value is the start address of the

instruction following the last instruction executed.
4. Execution jumps to the address fetched from the exception handling vector table and program

execution commences. The jump is not a delayed branch.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 24 of 484
REJ09B0051-0300

3.5 Register Bank Errors

3.5.1 Register Bank Error Sources

(1) Bank Overflow
When a save has already been performed to all register bank areas when acceptance of register
overflow exception has been set by interrupt controller, and an interrupt that uses a register
bank is generated and is accepted by the CPU

(2) Bank Underflow
When an attempt is made to execute a RESBANK instruction when a save has not been
performed to a register bank

3.5.2 Register Bank Error Exception Handling

Register bank error exception handling is started when a register bank error occurs.  CPU
operations are as follows.

1. The start address of the exception service routine corresponding to the register bank error is
fetched from the exception handling vector table.

2. The status register (SR) is saved on the stack.
3. The program counter (PC) is saved on the stack. The saved PC value is the start address of the

instruction following the last instruction executed, in the case of a bank overflow, or the start
address of the executed RESBANK instruction, in the case of an underflow. To prevent
multiple interrupts when a bank overflow occurs, the level of the interrupt that is the source of
the bank overflow is written to the interrupt mask level bits (I3 to I0) in the status register
(SR).

4. Execution jumps to the address fetched from the exception handling vector table and program
execution commences. The jump is not a delayed branch.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 25 of 484
REJ09B0051-0300

3.6 Interrupts

3.6.1 Interrupt Sources

Interrupt exception handling can be initiated by an NMI, a user break, the H-UDI, an external
interrupt, or an on-chip peripheral module, as shown in table 3.6.

Table 3.6 Interrupt Sources

Type Request Source Number of Sources

NMI NMI pin (external input) 1
User break User break controller 1
H-UDI User debug interface 1
External interrupt (IRQ),
on-chip peripheral module

External interrupt pin, on-chip peripheral
module

See Note

Each interrupt source is assigned a different vector number and vector table offset.  For details of
vector numbers and vector table address offsets, see �Interrupt Exception Vectors and Priority� in
the Interrupt Controller section of the hardware manual for the relevant product.

Note: For details and numbers of external interrupts (IRQ) and on-chip peripheral module
request sources, see �Interrupt Sources� in the Interrupt Controller section of the hardware
manual for the relevant product.

3.6.2 Interrupt Priority

Interrupt sources are assigned priority levels.  If a number of interrupts occur simultaneously
(multiple interruption), the priority order is determined by the interrupt controller (INTC) and
exception handling is initiated accordingly.

Interrupt source priority levels are expressed as values from 0 to 16, with 0 representing the lowest
priority level and 16 the highest.  The NMI interrupt is the highest-priority interrupt at level 16; it
cannot be masked and is always accepted.  The user break interrupt and H-UDI are assigned
priority level 15.  The priority level of IRQ interrupts and on-chip peripheral module interrupts can
be set as desired in the interrupt priority level setting registers of the INTC (see table 3.7).  Priority
levels 0 to 15, but not 16, can be set.  For details of the interrupt priority level setting registers, see
the Interrupt Controller section of the hardware manual for the relevant product.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 26 of 484
REJ09B0051-0300

Table 3.7 Interrupt Priority Levels

Type Priority Level Notes

NMI 16 Fixed priority level, not maskable
User break 15 Fixed priority level
H-UDI 15 Fixed priority level
External interrupt (IRQ),
on-chip peripheral module

0 to 15 Can be set in interrupt priority level setting
register

3.6.3 Interrupt Exception Handling

When an interrupt occurs, its priority is determined by the interrupt controller (INTC).  NMI is
always accepted, but other interrupts are only accepted if their priority level is higher than the
priority level set in the interrupt mask bits (I3 to I0) in the status register (SR).

When an interrupt is accepted, interrupt exception handling is started.  In interrupt exception
handling, the CPU saves SR and the program counter (PC) on the stack.  In interrupt exception
handling other than NMI, UBC, when register bank use has been set, general registers R0 to R14,
control register GBR, system registers MACH, MACL, and PR, and the vector table address offset
of the interrupt exception handling to be executed, are saved to the register bank.  In the case of
exception handling due to an address error, RAM error, register bank error, NMI interrupt, UBC
interrupt, or instruction, saving to a register bank is not performed.  Also, when saving is
performed to all register banks, automatic saving to the stack is performed instead of register bank
saving.  In this case, an interrupt controller setting must have been made for register bank
overflow exceptions not to be accepted.  If a setting has been made for register bank overflow
exceptions to be accepted, a register bank overflow exception will be generated.  The interrupt
priority level of the accepted interrupt is then written to bits I3 to I0 in SR.  In the case of NMI,
however, although its priority level is 16, H'F (level 15) is written to bits I3 to I0.  Next, the CPU
fetches the exception service routine start address from the exception vector table entry
corresponding to the accepted interrupt, jumps to that address, and starts executing the exception
service routine.  For details of interrupt exception handling, see �Operation� in the Interrupt
Controller section of the hardware manual for the relevant product.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 27 of 484
REJ09B0051-0300

3.7 Instruction Exceptions

3.7.1 Types of Instruction Exception

There are five kinds of instruction that can initiate exception handling: the TRAP instruction, slot
illegal instructions, general illegal instructions, integer division instructions, and floating-point
operation instructions.  These are summarized in table 3.8.

Table 3.8 Instruction Exception Types

Type Source Instruction Notes

Trap instruction TRAPA
Slot illegal
instruction

Undefined code (FPU instruction or
FPU-related CPU instruction in module
standby status including FPU or in
product with no FPU, or register bank-
related instruction in product with no
register bank) located immediately after
delayed branch instruction (in delay
slot), instruction that modifies PC, 32-
bit instruction, RESBANK instruction,
DIVS instruction, or DIVU instruction

Delayed branch instructions: JMP,
JSR, BRA, BSR, RTS, RTE, BF/S,
BT/S, BSRF, BRAF
Register bank-related instructions:
RESBANK, LDBANK, STBANK
Instructions that modify PC: JMP,
JSR, BRA, BSR, RTS, RTE, BT, BF,
TRAPA, BF/S, BT/S, BSRF, BRAF,
JSR/N, RTV/N
32-bit instructions: BAND.B,
BANDNOT.B, BCLR.B, BLD.B,
BLDNOT.B, BOR.B, BORNOT.B,
BSET.B, BST.B, BXOR.B, FMOV.S
@disp12, FMOV.D @disp12,
MOV.B @disp12, MOV.W @disp12,
MOV.L @disp12, MOVI20,
MOVI20S, MOVU.B, MOVU.W

General illegal
instruction

Undefined code (FPU instruction, FPU-
related CPU instruction, or register
bank-related instruction in module
standby status including FPU or in
product with no FPU) not in delay slot
Division by zero DIVU, DIVSInteger division

exception Negative maximum value ÷ (-1) DIVS
Floating-point
operation
instruction

Instruction causing invalid operation
defined by IEEE754 standard or
division-by-zero exception, instruction
causing overflow, underflow, or inexact
exception

FADD, FSUB, FMUL, FDIV, FMAC,
FCMP/EQ, FCMP/GT, FLOAT,
FTRC, FCNVDS, FCNVSD, FSQRT



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 28 of 484
REJ09B0051-0300

3.7.2 Trap Instruction

When a TRAPA instruction is executed, trap instruction exception handling is started.  The CPU
operates as follows.

1. The start address of the exception service routine corresponding to the vector number specified
by the TRAPA instruction is fetched from the exception handling vector table.

2. The status register (SR) is saved on the stack.
3. The program counter (PC) is saved on the stack. The saved PC value is the start address of the

instruction following the TRAPA instruction.
4. Execution jumps to the address fetched from the exception handling vector table and program

execution commences. The jump is not a delayed branch.

3.7.3 Slot Illegal Instructions

An instruction located immediately after a delayed branch instruction is said to be located in the
delay slot.  If the instruction in the delay slot is undefined code, slot illegal instruction exception
handling is started when that undefined code is decoded.  Also, if the instruction in the delay slot
is one that modifies the program counter (PC), slot illegal instruction exception handling is started
when that instruction is decoded.  Moreover, in the case of a product that does not have an FPU, or
if the FPU is in the module standby state, a floating-point instruction or FPU-related instruction is
treated as undefined code, and if located in a delay slot, will cause slot illegal instruction exception
handling to be started when decoded.  In addition, if the product that does not have a register bank,
register bank-related instructions are treated as undefined code.  If located in a delay slot, when
decoded they will cause slot illegal instruction handling to be started.

Furthermore, if an instruction located in a delay slot is a 32-bit instruction, RESBANK instruction,
DIVS instruction, or DIVU instruction, slot illegal instruction exception handling will be started
when this instruction is decoded.

CPU operations in slot illegal instruction exception handling are as follows.

1. The start address of the exception service routine is fetched from the exception handling vector
table.

2. The status register (SR) is saved on the stack.
3. The program counter (PC) is saved on the stack. The saved PC value is the jump destination

address of the delayed branch instruction immediately preceding an undefined code,
instruction that overwrites the PC, 32-bit instruction, RESBANK instruction, DIVS
instruction, or DIVU instruction.

4. Execution jumps to the address fetched from the exception handling vector table and program
execution commences. The jump is not a delayed branch.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 29 of 484
REJ09B0051-0300

3.7.4 General Illegal Instructions

When undefined code located other than immediately after a delayed branch instruction (in a delay
slot) is decoded, general illegal instruction exception handling is started.  Also, in the case of a
product that does not have an FPU, or if the FPU is in the module standby state, a floating-point
instruction or FPU-related instruction is treated as undefined code, and if located other than
immediately after a delayed branch instruction (in a delay slot), will cause general illegal
instruction exception handling to be started when decoded.  In addition, if the product that does
not have a register bank, register bank-related instructions are treated as undefined code. If not
located immediately after a delayed branch instruction (in a delay slot), when decoded they will
cause slot illegal instruction handling to be started.

The CPU follows the same procedure as in the case of slot illegal instruction exception handling,
except that the PC value saved is the start address of the undefined code.

3.7.5 Integer Division Instructions

An integer division exception is generated if an integer division instruction executes division by
zero, or if the result of integer division overflows.  Instructions that may cause a division-by-zero
exception are DIVU and DIVS.  The only instruction that may cause an overflow exception is
DIVS, the exception being generated if the negative maximum value is divided by �1.  CPU
operations in integer division exception handling are as follows.

1. The start address of the exception service routine corresponding to the integer division
exception is fetched from the exception handling vector table.

2. The status register (SR) is saved on the stack.
3. The program counter (PC) is saved on the stack. The saved PC value is the start address of the

integer division instruction that generated the exception.
4. Execution jumps to the address fetched from the exception handling vector table and program

execution commences. The jump is not a delayed branch.

3.7.6 Floating-Point Operation Instructions

An FPU exception is generated when the V, Z, O, U, or I bit in the enable field of the FPSCR
register is set.  This indicates the occurrence of an invalid operation exception defined by the
IEEE754 standard, a division-by-zero exception, overflow (in the case of an instruction for which
this is possible), underflow (in the case of an instruction for which this is possible), or an
imprecision exception (in the case of an instruction for which this is possible).

Floating-point operation instructions that may cause an exception are as follows.



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 30 of 484
REJ09B0051-0300

FADD, FSUB, FMUL, FDIV, FMAC, FCMP/EQ, FCMP/GT, FLOAT, FTRC,
FCNVDS, FCNVSD, FSQRT

An FPU exception is generated only when the corresponding enable bit is set.  When the FPU
detects an exception, FPU operation is halted and exception generation is reported to the CPU.
When exception handling is started, CPU operations are as follows.

1. The start address of the exception service routine stored in VBR + H'00000034 is fetched from
the exception handling vector table.

2. SR contents are saved on the stack.
3. PC is saved on the stack.  The PC value saved is the start address of the instruction following

the last instruction executed.
4. Control branches to the address stored in VBR + H'00000034.

The exception flag bits in FPSCR are always updated regardless of whether or not an FPU
exception has been accepted, and remain set until explicitly cleared by the user by means of an
instruction.  The FPSCR source bits change each time an FPU instruction is executed.

When the V bit in the enable field of the FPSCR register is set and the QIS bit in FPSCR is also
set, FPU exception handling is started when qNaN or ±∞ is input to a floating-point operation
instruction source.

3.8 Cases in Which Exceptions Are Not Accepted

There are cases, as shown in table 3.9, in which, if an address error, RAM error, FPU exception,
register bank error (overflow), or interrupt occurs immediately after a delayed branch instruction,
the exception is not accepted immediately, but is held pending.  In such cases, the exception will
be accepted when an instruction for which exception acceptance is permitted is decoded.

Table 3.9 Exception Source Occurrence Immediately after Delayed Branch Instruction

Exception Source

Point of Occurrence
Address
Error RAM Error

FPU
Exception

Register Bank
Error (Overflow) Interrupt

Immediately after a
delayed branch
instruction*

× × × × ×

Notes: ×: Not accepted
* Delayed branch instructions: JMP, JSR, BRA, BSR, RTS, RTE, BF/S, BT/S, BSRF,

BRAF



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 31 of 484
REJ09B0051-0300

3.9 Stack Status after Exception Handling

Table 3.10 shows the stack status after completion of exception handling.

Table 3.10 Stack Status after Exception Handling

Address of instruction 

following executed 

instruction

(32 bits)

SR

SP

(32 bits)

Address of instruction 

following executed 

instruction

(32 bits)

SR

SP

(32 bits)

Start address of 

relevant RESBANK 

instruction

(32 bits)

SR

SP

(32 bits)

Address of instruction 

following TRAPA 

instruction

(32 bits)

SR

SP

(32 bits)

Start address of 

general illegal 

instruction

(32 bits)

SR

SP

(32 bits)

Address of instruction 

following executed 

instruction

(32 bits)

SR

SP

(32 bits)

Address of instruction 

following executed 

instruction

(32 bits)

SR

SP

(32 bits)

Start address of 

relevant integer 

division instruction

(32 bits)

SR

SP

(32 bits)

Jump destination 

address of delayed 

branch instruction

(32 bits)

SR

SP

(32 bits)

Address of instruction 

following executed 

instruction

(32 bits)

SR

SP

(32 bits)

Address 

error

RAM error

Register 

bank error 

(underflow)

Trap 

instruction

General 

illegal 

instruction

Interrupt

Register 

bank error 

(overflow)

Integer 

division 

instruction 

(division 

by zero, 

overflow)

Slot illegal 

instruction

FPU

exception

Stack StatusType Stack StatusType



Section 3   Exception Handling

Rev. 3.00  Jul 08, 2005  page 32 of 484
REJ09B0051-0300

3.10 Usage Notes

3.10.1 Stack Pointer (SP) Value

Ensure that the stack pointer (SP) value is a multiple of 4.  If it is not, an address error will be
caused when the stack is accessed in exception handling.

3.10.2 Vector Base Register (VBR) Value

Ensure that the vector base register (VBR) value is a multiple of 4.  If it is not, an address error
will be caused when the vector is accessed in exception handling.

3.10.3 Address Errors Occurring in Address Error Exception Handling Stacking

If the stack pointer (SP) value is not a multiple of 4, an address error will occur in exception
handling (interrupt, etc.) stacking, and after the exception handling is completed, address error
exception handling will be started.  An address error will also occur in stacking in the address
error exception handling, but this address error will not be accepted in order to prevent endless
stacking due to address errors.  This enables program control to be switched to the address error
exception service routine, and error handling to be carried out.

When an address error occurs in exception handling stacking, the stacking bus cycle (write) is
executed.  In SR and PC stacking, SP is decremented by 4 in each case, and therefore the SP value
is not a multiple of 4 after stacking is completed.  Also, the address value output in stacking is the
SP value, and the actual address at which the error occurred is output.  In this case, the stacked
write data is undefined.



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 33 of 484
REJ09B0051-0300

Section 4   Instruction Features

4.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

(1)  16-Bit Fixed-Length Instructions

Basic instructions have a fixed length of 16 bits, increasing program code efficiency.

(2)  Addition of 32-Bit Fixed-Length Instructions

The SH-2A/SH2A-FPU features the addition of 32-bit fixed-length instructions, improving
performance and ease of use.

(3)  One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system.

(4)  Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes, words,
or longwords. Byte or word data accessed from memory is sign-extended and calculated with
longword data. Immediate data is sign-extended for arithmetic operations or zero-extended for
logic operations. It also is calculated with longword data.

Table 4.1 Sign Extension of Word Data

SH-2A/SH2A-FPU CPU Description Example for Other CPU

MOV.W @(disp,PC),R1
ADD R1,R0
    .........
.DATA.W H'1234

Data is sign-extended to 32
bits, and R1 becomes
H'00001234. It is next
operated upon by an ADD
instruction.

ADD.W     #H'1234,R0

Note: The address of the immediate data is accessed by @(disp, PC).

(5)  Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory access, data
is loaded to the registers and executed (load-store architecture). Instructions such as AND that
manipulate bits, however, are executed directly in memory.



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 34 of 484
REJ09B0051-0300

(6)  Delayed Branching

With the exception of some instructions, unconditional branch instructions, etc., are executed as
delayed branches.  With a delayed branch instruction, the branch is made after execution of the
instruction immediately following the delayed branch instruction.  This reduces disruption of the
pipeline when a branch is made.

In a delayed branch, the actual branch operation occurs after execution of the slot instruction.
However, instruction execution for register updating, etc., excluding the branch operation, is
performed in delayed branch instruction → delay slot instruction order.  For example, even though
the contents of the register holding the branch destination address are changed in the delay slot,
the branch destination address remains as the register contents prior to the change.

Table 4.2 Delayed Branch Instructions

SH-2A/SH2A-FPU CPU Description Example of Other CPU
BRA TRGET
ADD R1,R0

ADD is executed before
branch to TRGET.

ADD.W R1,R0
BRA TRGET

(7)  Addition of Unconditional Branch Instructions with No Delay Slot

The SH-2A/SH2A-FPU features the addition of unconditional branch instructions in which a delay
slot instruction is not executed.  This makes it possible to cut down on the number of unnecessary
NOP instructions, and so reduce the code size.

(8)  Multiplication/Accumulation Operation

16bit × 16bit → 32-bit multiplication operations are executed in one to two cycles. 16bit × 16bit +
64bit → 64-bit multiplication/accumulation operations are executed in two to three cycles. 32bit ×
32bit → 64-bit multiplication and 32bit × 32bit + 64bit → 64-bit multiplication/accumulation
operations are executed in two to four cycles.

(9)  T Bit

The T bit in the status register changes according to the result of the comparison, and in turn is the
condition (true/false) that determines if the program will branch. The number of instructions after
T bit in the status register is kept to a minimum to improve the processing speed.



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 35 of 484
REJ09B0051-0300

Table 4.3 T Bit

SH-2A/SH2A-FPU CPU Description Example for Other CPU

CMP/GE R1,R0
BT TRGET0
BF TRGET1

T bit is set when R0 ≥ R1. The
program branches to TRGET0
when R0 ≥ R1 and to TRGET1
when R0 < R1.

CMP.W R1,R0
BGE TRGET0
BLT TRGET1

ADD #�1,R0
CMP/EQ #0,R0
BT TRGET

T bit is not changed by ADD. T
bit is set when R0 = 0. The
program branches if R0 = 0.

SUB.W #1,R0
BEQ TRGET

(10)  Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not input
via instruction codes but is stored in a memory table. The memory table is accessed by an
immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement.

With the SH-2A/SH2A-FPU, immediate data of 17 to 28 bits can be located in an instruction code.
However, for immediate data of 21 to 28 bits, an OR instruction must be executed after a register
transfer.

Table 4.4 Referencing by Means of Immediate Data

Type SH-2A/SH2A-FPU CPU Example for Other CPU
8-bit immediate MOV #H'12,R0 MOV.B #H'12,R0
16-bit immediate MOVI20 #H'1234, R0 MOV.W #H'1234,R0
20-bit immediate MOVI20 #H'12345, R0 MOV.L #H'12345,R0
28-bit immediate MOVI20S #H'12345, R0

OR #H'67, R0
MOV.L #H'1234567,R0

32-bit immediate MOV.L @(disp,PC),R0
. . . . . . . . . . .
.DATA.L H'12345678

MOV.L #H'12345678,R0

Note: Immediate data is referenced by @(disp,PC).



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 36 of 484
REJ09B0051-0300

(11)  Absolute Address

When data is accessed by absolute address, the value already in the absolute address is placed in
the memory table. Loading the immediate data when the instruction is executed transfers that
value to the register and the data is accessed in the indirect register addressing mode.

With the SH-2A/SH2A-FPU, when data is referenced using an absolute address not exceeding 28
bits, it is also possible to transfer immediate data located in the instruction code to a register, and
reference the data using register indirect addressing mode.  However, when referencing data using
an absolute address of 21 to 28 bits, an OR instruction must be used after the register transfer.

Table 4.5 Referencing by Means of Absolute Address

Type SH-2A/SH2A-FPU CPU Example for Other CPU

Up to 20 bits MOVI20 #H'12345, R1
MOV.B @R1, R0

MOV.B @H'12345,R0

21 to 28 bits MOVI20S #H'12345, R1
OR #H'67, R1
MOV.B @R1, R0

MOV.B @H'1234567,R0

29 bits or more MOV.L @(disp,PC),R1
MOV.B @R1,R0
. . . . . . . . . .
.DATA.L H'12345678

MOV.B @H'12345678,R0

(12)  16-Bit/32-Bit Displacement

When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value is
placed in the memory table. Loading the immediate data when the instruction is executed transfers
that value to the register and the data is accessed in the indirect indexed register addressing mode.

Table 4.6 Displacement Accessing

Type SH-2A/SH2A-FPU CPU Example for Other CPU

16-bit displacement MOV.W @(disp,PC),R0
MOV.W @(R0,R1),R2
   ..................
.DATA.W H'1234

MOV.W   @(H'1234,R1),R2



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 37 of 484
REJ09B0051-0300

4.2 Addressing Modes

Addressing modes effective address calculation by the CPU core are described below.

Table 4.7 Addressing Modes and Effective Addresses

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

Direct
register
addressing

Rn The effective address is register Rn. (The operand is
the contents of register Rn.)

�

Indirect
register
addressing

@Rn The effective address is the content of register Rn.

Rn Rn

Rn

Post-
increment
indirect
register
addressing

@Rn + The effective address is the content of register Rn. A
constant is added to the content of Rn after the
instruction is executed. 1 is added for a byte
operation, 2 for a word operation, or 4 for a longword
operation.

Rn Rn

1/2/4

+Rn + 1/2/4

Rn
(After the
instruction is
executed)
Byte: Rn + 1
→ Rn
Word: Rn + 2
→ Rn
Longword:
Rn + 4 → Rn

Pre-
decrement
indirect
register
addressing

@�Rn The effective address is the value obtained by
subtracting a constant from Rn. 1 is subtracted for a
byte operation, 2 for a  word operation, or 4 for a
longword operation.

Rn

1/2/4

Rn  1/2/4
Rn  1/2/4

Byte: Rn � 1
→ Rn
Word: Rn � 2
→ Rn
Longword:
Rn � 4 → Rn
(Instruction
executed with
Rn after
calculation)



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 38 of 484
REJ09B0051-0300

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

Indirect
register
addressing
with
displace-
ment

@(disp:4,
Rn)

The effective address is Rn plus a 4-bit displacement
(disp). The value of disp is zero-extended, and
remains the same for a byte operation, is doubled for
a word operation, or is quadrupled for a longword
operation.

Rn

1/2/4

Rn
+ disp  1/2/4

+disp
(zero-extended)

Byte: Rn +
disp
Word: Rn +
disp × 2
Longword:
Rn + disp × 4

@(disp:12,
Rn)

Effective address is register Rn contents with 12-bit
displacement disp added.  disp is zero-extended.

Rn

Rn + disp+

disp
(zero-extended)

Byte: Rn +
disp
Word: Rn +
disp
Longword:
Rn + disp

Indirect
indexed
register
addressing

@(R0, Rn) The effective address is the Rn value plus R0.

Rn

R0

Rn + R0+

Rn + R0

Indirect
GBR
addressing
with
displace-
ment

@(disp:8,
GBR)

The effective address is the GBR value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and remains the same for a byte
operation, is doubled for a word operation, or is
quadrupled for a longword operation.

GBR

1/2/4

GBR
+ disp  1/2/4

+disp
(zero-extended)

Byte: GBR +
disp
Word: GBR +
disp × 2
Longword:
GBR + disp ×
4



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 39 of 484
REJ09B0051-0300

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

Indirect
indexed
GBR
addressing

@(R0,
GBR)

The effective address is the GBR value plus R0.

GBR

R0

GBR + R0+

GBR + R0

TBR
duplicate
indirect with
displacement

@@(disp:8,
TBR)

Effective address is register TBR contents with 8-bit
displacement disp added.  After disp is zero-
extended, it is multiplied by 4.

TBR

4

TBR 
+ disp  4

(TBR 
+ disp  4)

+disp
(zero-extended)

(TBR + disp x
4) address
contents

PC relative
addressing
with
displace-
ment

@(disp:8,
PC)

The effective address is the PC value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and disp is doubled for a word operation,
or is quadrupled for a longword operation. For a
longword operation, the lowest two bits of the PC are
masked.

PC

H'FFFFFFFC
PC + disp  2

or
PC&H'FFFFFFFC

+ disp  4

+

2/4

x

&
(for longword)

disp
(zero-extended)

Word: PC +
disp × 2
Longword:
PC &
H'FFFFFFFC
+ disp × 4



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 40 of 484
REJ09B0051-0300

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

PC relative
addressing

disp:8 The effective address is the PC value sign-extended
with an 8-bit displacement (disp), doubled, and added
to the PC.

PC

2

+disp
(sign-extended)

PC + disp  2

PC + disp × 2

disp:12 The effective address is the PC value sign-extended
with a 12-bit displacement (disp), doubled, and added
to the PC.

PC

2

+disp
(sign-extended)

PC + disp  2

PC + disp × 2

Rn The effective address is the register PC plus Rn.

PC

R0

PC + R0+

PC + Rn

Immediate
addressing

#imm:20 20-bit immediate data imm of MOVI20 instruction is
sign-extended.
31 019

Sign extension imm (20 bits)

�

20-bit immediate data imm of MOVI20S instruction
is left-shifted 8 bits, upper part is sign-extended,
and lower part is zero-padded.
31 027 8

Sign extension

imm (20 bits) 00000000

�



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 41 of 484
REJ09B0051-0300

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

Immediate
addressing

#imm:8 The 8-bit immediate data (imm) for the TST, AND,
OR, and XOR instructions are zero-extended.

�

#imm:8 The 8-bit immediate data (imm) for the MOV, ADD,
and CMP/EQ instructions are sign-extended.

�

#imm:8 Immediate data (imm) for the TRAPA  instruction is
zero-extended and is quadrupled.

�

#imm:3 3-bit immediate data imm of BAND, BOR, BXOR,
BST, BLD, BSET, or BCLR instruction indicates bit
position.

�

4.3 Instruction Format

The instruction format table, table 5.8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

xxxx: Instruction code
mmmm: Source register
nnnn: Destination register
iiii: Immediate data
dddd: Displacement



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 42 of 484
REJ09B0051-0300

Table 4.8 Instruction Formats

Instruction Formats
Source
Operand

Destination
Operand Example

0 format

xxxx xxxx xxxxxxxx
15 0

― ― NOP

― nnnn: Register
direct

MOV T   Rnn format

xxxx xxxx xxxxnnnn
15 0

Control register
or system
register

nnnn: Register
direct

STS   MACH,Rn

R0 (register
direct)

nnnn: Register
direct

DIVU   R0, Rn

Control register
or system
register

nnnn: Register
indirect with pre-
decrement

STC.L   SR,@-Rn

mmmm:
Register direct

R15 (register
indirect with pre-
decrement)

MOVMU.L
Rm,@-R15

R15 (register
indirect with
post-increment)

nnnn: Register
direct

MOVMU.L
@R15+,Rn

R0 (register
direct)

nnnn: Register
indirect with post-
increment

MOV.L   R0,@Rn+

mmmm:
Register direct

Control register or
system register

LDC   Rm,SRm format

xxxxmmmmxxxx xxxx
15 0

mmmm:
Register indirect
with post-
increment

Control register or
system register

LDC.L   @Rm+,SR

mmmm:
Register indirect

� JMP   @Rm

mmmm:
Register indirect
with pre-
decrement

R0 (register direct) MOV.L   @-Rm, R0

mmmm: PC-
relative using
Rm

� BRAF   Rm



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 43 of 484
REJ09B0051-0300

Instruction Formats
Source
Operand

Destination
Operand Example

mmmm: Direct
register

nnnn: Direct
register

ADD   Rm,Rnnm format

nnnnxxxx xxxx
15 0

mmmm mmmm: Direct
register

nnnn: Indirect
register

MOV.L   Rm,@Rn

mmmm: Indirect
post-increment
register
(multiply/
accumulate)
nnnn*: Indirect
post-increment
register
(multiply/
accumulate)

MACH, MACL MAC.W
@Rm+,@Rn+

mmmm: Indirect
post-increment
register

nnnn: Direct
register

MOV.L   @Rm+,Rn

mmmm: Direct
register

nnnn: Indirect pre-
decrement register

MOV.L   Rm,@-Rn

mmmm: Direct
register

nnnn: Indirect
indexed register

MOV.L
Rm,@(R0,Rn)

md format

xxxx dddd
15 0

mmmmxxxx

mmmmdddd:
indirect register
with
displacement

R0 (Direct register) MOV.B
@(disp,Rm),R0

nd4 format

ddddnnnnxxxx
15 0

xxxx

R0 (Direct
register)

nnnndddd: Indirect
register with
displacement

MOV.B
R0,@(disp,Rn)

mmmm: Direct
register

nnnndddd: Indirect
register with
displacement

MOV.L
Rm,@(disp,Rn)

nmd format

nnnnxxxx dddd
15 0

mmmm
mmmmdddd:
Indirect register
with
displacement

nnnn: Direct
register

MOV.L
@(disp,Rm),Rn



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 44 of 484
REJ09B0051-0300

Instruction Formats
Source
Operand

Destination
Operand Example

mmmm:
Register direct

nnnndddd:
Register indirect
with displacement

MOV.L
Rm,@(disp12, Rn)

nmd12 format

nnnnxxxx xxxx
32 16

mmmm

ddddxxxx dddd
15 0

dddd

mmmmdddd:
Register indirect
with
displacement

nnnn: Register
direct

MOV.L
@(disp12,Rm), Rn

dddddddd: GBR
indirect with
displacement

R0 (register direct) MOV.L
@(disp,GBR),R0

d format

ddddxxxx
15 0

xxxx dddd
R0 (register
direct)

dddddddd: GBR
indirect with
displacement

MOV.L
R0,@(disp,GBR)

dddddddd: PC-
relative with
displacement

R0 (register direct) MOVA
@(disp,PC),R0

dddddddd: TBR
duplicate
indirect with
displacement

� JSR/N   
@@(disp8,TBR)

dddddddd: PC-
relative

� BF   label

d12 format

ddddxxxx
15 0

dddd dddd

dddddddddddd:
PC relative

� BRA   label
(label = disp + PC)

nd8 format

ddddnnnnxxxx
15 0

dddd

dddddddd: PC
relative with
displacement

nnnn: Direct
register

MOV.L
@(disp,PC),Rn

iii i i i i i :
Immediate

Indirect indexed
GBR

AND.B
#imm,@(R0,GBR)

i format

i i i ixxxx
15 0

xxxx i i i i i i i i i i i i :
Immediate

R0 (Direct register) AND   #imm,R0

iii i i i i i :
Immediate

� TRAPA   #imm

ni format

nnnn i i i ixxxx
15 0

i i i i

i i i i i i i i :
Immediate

nnnn: Direct
register

ADD    #imm,Rn



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 45 of 484
REJ09B0051-0300

Instruction Formats
Source
Operand

Destination
Operand Example

ni3 format

xxxx mmmmxxxx i i i
15 0

x

nnnn: Register
direct
ii i: Immediate

� BLD   #imm3,Rn

� nnnn: Register
direct
ii i: Immediate

BST   #imm3,Rn

ni20 format

nnnnxxxx xxxx
32 16

i i i i

i i i ii i i i i i i i
15 0

i i i i

i i i i i i i i i i i i i i i i i i i i :
Immediate

nnnn: Register
direct

MOVI20
#imm20,Rn

nnnnddddddddd
ddd: Register
indirect with
displacement
ii i: Immediate

� BLD.B
#imm3,@(disp12,Rn)

nid format

nnnnxxxx xxxx
32 16

x i i i

ddddxxxx dddd
15 0

dddd
� nnnnddddddddddd

d: Register indirect
with displacement
ii i: Immediate

BST.B
#imm3,@(disp12,Rn)

Note:  * In multiply/accumulate instructions, nnnn is the source register.



Section 4   Instruction Features

Rev. 3.00  Jul 08, 2005  page 46 of 484
REJ09B0051-0300



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 47 of 484
REJ09B0051-0300

Section 5   Instruction Set

5.1 Instruction Set by Classification

Table 5.1 shows instruction by classification.

Table 5.1 Classification of Instruction

Classification
Instruction
Type Op Code Function

Number of
Instructions

Data transfer
instructions

13 MOV Data transfer
Immediate data transfer
Peripheral module data transfer
Structure data transfer
Reverse stack transfer

62

MOVA Execution address transfer
MOVI20 20-bit immediate data transfer
MOVI20S 20-bit immediate data transfer

8-bit left-shift
MOVML R0-Rn register save/restore
MOVMU Rn-R14, PR register save/restore
MOVRT T bit inversion and transfer to Rn
MOVT T bit transfer
MOVU Unsigned data transfer
NOTT T bit inversion
PREF Prefetch to operand cache
SWAP Upper/lower swap
XTRCT Extraction of middle of linked registers



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 48 of 484
REJ09B0051-0300

Classification
Instruction
Type Op Code Function

Number of
Instructions

26 ADD Binary addition 40
ADDC Binary addition with carry

Arithmetic
operation
instructions

ADDV Binary addition with overflow
CMP/cond Comparison
CLIPS Signed saturation value comparison
CLIPU Unsigned saturation value comparison
DIVS Signed division (32 ÷ 32)
DIVU Unsigned division (32 ÷ 32)
DIV1 1-step division
DIV0S Signed 1-step division initialization
DIV0U Unsigned 1-step division initialization
DMULS Signed double-precision multiplication
DMULU Unsigned double-precision

multiplication
DT Decrement and test
EXTS Sign extension
EXTU Zero extension
MAC Multiply and accumulate, double-

precision multiply and accumulate
MUL Double-precision multiplication
MULR Rn result storage signed multiplication
MULS Signed multiplication
MULU Unsigned multiplication
NEG Sign inversion
NEGC Sign inversion with borrow
SUB Binary subtraction
SUBC Binary subtraction with borrow
SUBV Binary subtraction with underflow



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 49 of 484
REJ09B0051-0300

Classification
Instruction
Type Op Code Function

Number of
Instructions

6 AND Logical AND 14Logic operation
instructions NOT Bit inversion

OR Logical OR
TAS Memory test and bit setting
TST Logical AND T bit setting
XOR Exclusive logical OR

Shift instructions 12 ROTL 1-bit left rotation 16
ROTR 1-bit right rotation
ROTCL 1-bit left rotation with T bit
ROTCR 1-bit right rotation with T bit
SHAD Dynamic arithmetic shift
SHAL Arithmetic 1-bit left shift
SHAR Arithmetic 1-bit right shift
SHLD Dynamic logical shift
SHLL Logical 1-bit left shift
SHLLn Logical n-bit left shift
SHLR Logical 1-bit right shift
SHLRn Logical n-bit right shift



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 50 of 484
REJ09B0051-0300

Classification
Instruction
Type Op Code Function

Number of
Instructions

Branch
instructions

10 BF Conditional branch, delayed
conditional branch (branches if T = 0)

15

BT Conditional branch, delayed
conditional branch (branches if T = 1)

BRA Unconditional delayed branch
BRAF Unconditional delayed branch
BSR Delayed branch to subroutine

procedure
BSRF Delayed branch to subroutine

procedure
JMP Unconditional delayed branch
JSR Branch to subroutine procedure,

delayed branch to subroutine
procedure

RTS Return from subroutine procedure,
delayed return from subroutine
procedure

RTV/N Return from subroutine procedure with
Rm → R0 transfer

14 CLRT T bit clear 36System control
instructions CLRMAC MAC register clear

LDBANK Register restoration from specified
register bank entry

LDC Load into control register
LDS Load into system register
NOP No operation
RESBANK Register restoration from register bank
RTE Return from exception handling
SETT T bit setting
SLEEP Transition to power-down state
STBANK Register save to specified register

bank entry
STC Store from control register
STS Store from system register
TRAPA Trap exception handling



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 51 of 484
REJ09B0051-0300

Classification
Instruction
Type Op Code Function

Number of
Instructions

19 FABS Floating-point absolute value 48Floating-point
instructions FADD Floating-point addition

FCMP Floating-point comparison
FCNVDS Conversion from double-precision to

single-precision
FCNVSD Conversion from single-precision to

double-precision
FDIV Floating-point division
FLDI0 Floating-point load immediate 0
FLDI1 Floating-point load immediate 1
FLDS Floating-point load into system register

FPUL
FLOAT Conversion from integer to floating-

point
FMAC Floating-point multiply and accumulate

operation
FMOV Floating-point data transfer
FMUL Floating-point multiplication
FNEG Floating-point sign inversion
FSCHG SZ bit inversion
FSQRT Floating-point square root
FSTS Floating-point store from system

register FPUL
FSUB Floating-point subtraction
FTRC Floating-point conversion with

rounding to integer
2 LDS Load into floating-point system register 8FPU-related

CPU instructions STS Store from floating-point system
register



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 52 of 484
REJ09B0051-0300

Classification
Instruction
Type Op Code Function

Number of
Instructions

BAND Bit AND

BCLR Bit clear

BLD Bit load

BOR Bit OR

BSET Bit setting

BST Bit store

BXOR Bit exclusive OR

BANDNOT Bit NOT AND

BORNOT Bit NOT OR

Bit manipulation
instructions

10

BLDNOT Bit NOT load

14

Total 112 253



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 53 of 484
REJ09B0051-0300

Table 5.2 shows the format used in tables 5.3 to 5.8, which list instruction codes, operation, and
execution states in order by classification.

Table 5.2 Instruction Code Format

Item Format Explanation
Instruction Rm: Source register

Rn: Destination register
imm: Immediate data
disp: Displacement*1

Instruction code MSB ↔ LSB mmmm: Source register
nnnn: Destination register

0000: R0
0001: R1

⋅
⋅
⋅

1111: R15
iiii: Immediate data
dddd: Displacement

Operation →, ← Direction of transfer
(xx) Memory operand
M/Q/T Flag bits in the SR
& Logical AND of each bit
| Logical OR of each bit
^ Exclusive OR of each bit
~ Logical NOT of each bit
<<n n-bit left shift
>>n n-bit right shift

Execution cycles � Value when no wait states are inserted*2

T bit � Value of T bit after instruction is executed.
An em-dash (�) in the column means no change.

Notes: 1. Depending on the operand size, displacement is scaled ×1, ×2, or ×4. For details, see
section 5, Instruction Descriptions.

2. Instruction execution cycles: The execution cycles shown in the table are minimums.
The actual number of cycles may be increased when (1) contention occurs between
instruction fetches and data access, or (2) when the destination register of the load
instruction (memory → register) and the register used by the next instruction are the
same.



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 54 of 484
REJ09B0051-0300

5.1.1 Data Transfer Instructions

Table 5.3 Data Transfer Instructions

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

MOV #imm, Rn 1110nnnniiiiiiii imm → sign extension → Rn 1 ― Yes Yes

MOV.W @(disp, PC), Rn 1001nnnndddddddd (disp×2+PC) → sign
extension → Rn

1 ― Yes Yes

MOV.L @(disp, PC), Rn 1101nnnndddddddd (disp×4+PC) → Rn 1 ― Yes Yes

MOV Rm, Rn 0110nnnnmmmm0011 Rm → Rn 1 ― Yes Yes

MOV.B Rm, @Rn 0010nnnnmmmm0000 Rm → (Rn) 1 ― Yes Yes

MOV.W Rm, @Rn 0010nnnnmmmm0001 Rm → (Rn) 1 ― Yes Yes

MOV.L Rm, @Rn 0010nnnnmmmm0010 Rm → (Rn) 1 ― Yes Yes

MOV.B @Rm, Rn 0110nnnnmmmm0000 (Rm) → sign extension → Rn 1 ― Yes Yes

MOV.W @Rm, Rn 0110nnnnmmmm0001 (Rm) → sign extension → Rn 1 ― Yes Yes

MOV.L @Rm, Rn 0110nnnnmmmm0010 (Rm) → Rn 1 ― Yes Yes

MOV.B Rm, @-Rn 0010nnnnmmmm0100 Rn - 1 → Rn, Rm → (Rn) 1 ― Yes Yes

MOV.W Rm, @-Rn 0010nnnnmmmm0101 Rn - 2 → Rn, Rm→ (Rn) 1 ― Yes Yes

MOV.L Rm, @-Rn 0010nnnnmmmm0110 Rn - 4 → Rn, Rm → (Rn) 1 ― Yes Yes

MOV.B @Rm+, Rn 0110nnnnmmmm0100 (Rm) → sign extension → Rn,
Rm + 1 → Rm

1 ― Yes Yes

MOV.W @Rm+, Rn 0110nnnnmmmm0101 (Rm) → sign extension → Rn,
Rm + 2 → Rm

1 ― Yes Yes

MOV.L @Rm+, Rn 0110nnnnmmmm0110 (Rm) → Rn, Rm + 4 → Rm 1 ― Yes Yes

MOV.B R0, @(disp, Rn) 10000000nnnndddd R0 → (disp+Rn) 1 ― Yes Yes

MOV.W R0, @(disp, Rn) 10000001nnnndddd R0 → (disp×2+Rn) 1 ― Yes Yes

MOV.L Rm, @(disp, Rn) 0001nnnnmmmmdddd Rm → (disp×4+Rn) 1 ― Yes Yes

MOV.B @(disp, Rm), R0 10000100mmmmdddd (disp+Rm) → sign extension
→ R0

1 ― Yes Yes

MOV.W @(disp, Rm), R0 10000101mmmmdddd (disp×2+Rm) → sign
extension → R0

1 ― Yes Yes

MOV.L @(disp, Rm), Rn 0101nnnnmmmmdddd (disp×4+Rm) → Rn 1 ― Yes Yes

MOV.B Rm, @(R0, Rn) 0000nnnnmmmm0100 Rm → (R0+Rn) 1 ― Yes Yes

MOV.W Rm, @(R0, Rn) 0000nnnnmmmm0101 Rm → (R0+Rn) 1 ― Yes Yes

MOV.L Rm, @(R0, Rn) 0000nnnnmmmm0110 Rm → (R0+Rn) 1 ― Yes Yes

MOV.B @(R0, Rm), Rn 0000nnnnmmmm1100 (R0+Rm) → sign extension
→ Rn

1 ― Yes Yes

MOV.W @(R0, Rm), Rn 0000nnnnmmmm1101 (R0+Rm) → sign extension
→ Rn

1 ― Yes Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 55 of 484
REJ09B0051-0300

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

MOV.L @(R0, Rm), Rn 0000nnnnmmmm1110 (R0+Rm) → Rn 1 ― Yes Yes

MOV.B R0, @(disp, GBR) 11000000dddddddd R0 → (disp+GBR) 1 ― Yes Yes

MOV.W R0, @(disp, GBR) 11000001dddddddd R0 → (disp×2+GBR) 1 ― Yes Yes

MOV.L R0, @(disp, GBR) 11000010dddddddd R0 → (disp×4+GBR) 1 ― Yes Yes

MOV.B @(disp, GBR), R0 11000100dddddddd (disp+GBR) → sign extension
→ R0

1 ― Yes Yes

MOV.W @(disp, GBR), R0 11000101dddddddd (disp×2+GBR) → sign
extension → R0

1 ― Yes Yes

MOV.L @(disp, GBR), R0 11000110dddddddd (disp×4+GBR) → R0 1 ― Yes Yes

MOV.B R0, @Rn+ 0100nnnn10001011 R0 → (Rn), Rn + 1 → Rn 1 ― Yes

MOV.W R0, @Rn+ 0100nnnn10011011 R0 → (Rn), Rn + 2 → Rn 1 ― Yes

MOV.L R0, @Rn+ 0100nnnn10101011 R0 → (Rn), Rn + 4 → Rn 1 ― Yes

MOV.B @-Rm, R0 0100mmmm11001011 Rm - 1 → Rm, (Rm) → sign
extension → R0

1 ― Yes

MOV.W @-Rm, R0 0100mmmm11011011 Rm - 2 → Rm, (Rm) → sign
extension → R0

1 ― Yes

MOV.L @-Rm, R0 0100mmmm11101011 Rm - 4 → Rm, (Rm) → R0 1 ― Yes

MOV.B Rm, @(disp12, Rn) 0011nnnnmmmm0001

0000dddddddddddd

Rm → (disp+Rn) 1 ― Yes

MOV.W Rm, @(disp12, Rn) 0011nnnnmmmm0001

0001dddddddddddd

Rm → (disp×2+Rn) 1 ― Yes

MOV.L Rm, @(disp12, Rn) 0011nnnnmmmm0001

0010dddddddddddd

Rm → (disp×4+Rn) 1 ― Yes

MOV.B @(disp12, Rm), Rn 0011nnnnmmmm0001

0100dddddddddddd

(disp+Rm) → sign extension
→ Rn

1 ― Yes

MOV.W @(disp12, Rm), Rn 0011nnnnmmmm0001

0101dddddddddddd

(disp×2+Rm) → sign
extension → Rn

1 ― Yes

MOV.L @(disp12, Rm), Rn 0011nnnnmmmm0001

0110dddddddddddd

(disp×4+Rm) → Rn 1 ― Yes

MOVA @(disp, PC), R0 11000111dddddddd disp × 4 + PC → R0 1 ― Yes Yes

MOVI20 #imm20, Rn 0000nnnniiii0000

iiiiiiiiiiiiiiii

imm → sign extension → Rn 1 ― Yes

MOVI20S #imm20, Rn 0000nnnniiii0001

iiiiiiiiiiiiiiii

imm<<8 → sign extension
→ Rn

1 ― Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 56 of 484
REJ09B0051-0300

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

MOVML.L Rm, @-R15 0100mmmm11110001 R15 - 4 → R15, Rm → (R15)

R15 - 4 → R15,
Rm - 1 → (R15)

                :

R15 - 4 → R15, R0 → (R15)

Note: When Rm = R15, read
Rm as PR

1 to 16 ― Yes

MOVML.L @R15+, Rn 0100nnnn11110101 (R15) → R0, R15 + 4→ R15

(R15) → R1, R15 + 4 → R15

                :

(R15) → Rn

Note: When Rn = R15, read
Rn as PR

1 to 16 ― Yes

MOVMU.L Rm, @-R15 0100mmmm11110000 R15 - 4 → R15, PR → (R15)

R15 - 4 → R15, R14 → (R15)

                :

R15 - 4 → R15, Rm → (R15)

Note: When Rm = R15, read
Rm as PR

1 to 16 ― Yes

MOVMU.L @R15+, Rn 0100nnnn11110100 (R15) → Rn, R15 + 4 → R15

(R15) → Rn + 1,
R15 + 4 → R15

                :

(R15) → R14, R15 + 4 → R15

(R15) → PR

Note: When Rn = R15, read
Rn as PR

1 to 16 ― Yes

MOVRT Rn 0000nnnn00111001 ~ T → Rn 1 ― Yes

MOVT Rn 0000nnnn00101001 T → Rn 1 ― Yes Yes

MOVU.B @(disp12,Rm), Rn 0011nnnnmmmm0001

1000dddddddddddd

(disp+Rm) → zero extension
→ Rn

1 ― Yes

MOVU.W @(disp12,Rm),Rn 0011nnnnmmmm0001

1001dddddddddddd

(disp×2+Rm) → zero
extension → Rn

1 ― Yes

NOTT 0000000001101000 ~ T → T 1 Opera-
tion
result

Yes

PREF @Rn 0000nnnn10000011 (Rn) → operand cache 1 ― Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 57 of 484
REJ09B0051-0300

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

SWAP.B Rm, Rn 0110nnnnmmmm1000 Rm → swap lower 2 bytes →
Rn

1 ― Yes Yes

SWAP.W Rm, Rn 0110nnnnmmmm1001 Rm → swap upper/lower
words → Rn

1 ― Yes Yes

XTRCT Rm, Rn 0010nnnnmmmm1101 Rm:Rn middle 32 bits → Rn 1 ― Yes Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 58 of 484
REJ09B0051-0300

5.1.2 Arithmetic Operation Instructions

Table 5.4 Arithmetic Operation Instructions

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

ADD Rm, Rn 0011nnnnmmmm1100 Rn + Rm → Rn 1 ― Yes Yes

ADD #imm, Rn 0111nnnniiiiiiii Rn + imm → Rn 1 ― Yes Yes

ADDC Rm, Rn 0011nnnnmmmm1110 Rn + Rm + T → Rn, carry → T 1 Carry Yes Yes

ADDV Rm, Rn 0011nnnnmmmm1111 Rn + Rm → Rn, overflow → T 1 Overflow Yes Yes

CMP/EQ #imm, R0 10001000iiiiiiii When R0 = imm, 1 → T

Otherwise, 0 → T

1 Com-
parison
result

Yes Yes

CMP/EQ Rm, Rn 0011nnnnmmmm0000 When Rn = Rm, 1 → T

Otherwise, 0 → T

1 Com-
parison
result

Yes Yes

CMP/HS Rm, Rn 0011nnnnmmmm0010 When Rn ≥ Rm (unsigned), 1 → T

Otherwise, 0 → T

1 Com-
parison
result

Yes Yes

CMP/GE Rm, Rn 0011nnnnmmmm0011 When Rn ≥ Rm (signed), 1 → T

Otherwise, 0 → T

1 Com-
parison
result

Yes Yes

CMP/HI Rm, Rn 0011nnnnmmmm0110 When Rn > Rm (unsigned), 1 → T

Otherwise, 0 → T

1 Com-
parison
result

Yes Yes

CMP/GT Rm, Rn 0011nnnnmmmm0111 When Rn > Rm (signed), 1 → T

Otherwise, 0 → T

1 Com-
parison
result

Yes Yes

CMP/PL Rn 0100nnnn00010101 When Rn > 0, 1 → T

Otherwise, 0 → T

1 Com-
parison
result

Yes Yes

CMP/PZ Rn 0100nnnn00010001 When Rn ≥ 0, 1 → T

Otherwise, 0 → T

1 Com-
parison
result

Yes Yes

CMP/STR Rm, Rn 0010nnnnmmmm1100 When any bytes are equal, 1 → T

Otherwise, 0 → T

1 Com-
parison
result

Yes Yes

CLIPS.B Rn 0100nnnn10010001 When Rn > (H'0000007F),

(H'0000007F) → Rn, 1 → CS

When Rn < (H'FFFFFF80),

(H'FFFFFF80) → Rn, 1 → CS

1 ― Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 59 of 484
REJ09B0051-0300

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

CLIPS.W Rn 0100nnnn10010101 When Rn > (H'00007FFF),

(H'00007FFF) → Rn, 1 → CS

When Rn < (H'FFFF8000),

(H'FFFF8000) → Rn, 1 → CS

1 ― Yes

CLIPU.B Rn 0100nnnn10000001 When Rn > (H'000000FF),

(H'000000FF) → Rn, 1 → CS

1 ― Yes

CLIPU.W Rn 0100nnnn10000101 When Rn > (H'0000FFFF),

(H'0000FFFF) → Rn, 1 → CS

1 ― Yes

DIV1 Rm, Rn 0011nnnnmmmm0100 1-step division (Rn ÷ Rm) 1 Calculati-
on result

Yes Yes

DIV0S Rm, Rn 0010nnnnmmmm0111 MSB of Rn → Q, MSB of Rm → M,
M ^ Q → T

1 Calculati-
on result

Yes Yes

DIV0U 0000000000011001 0→M/Q/T 1 0 Yes Yes

DIVS R0, Rn 0100nnnn10010100 Signed, Rn ÷ R0 → Rn

32 ÷ 32 → 32 bits

36 ― Yes

DIVU R0, Rn 0100nnnn10000100 Unsigned, Rn ÷ R0 → Rn

32 ÷ 32 → 32 bits

34 ― Yes

DMULS.L Rm, Rn 0011nnnnmmmm1101 Signed, Rn × Rm → MACH, MACL

32 × 32 → 64 bits

2 ― Yes Yes

DMULU.L Rm, Rn 0011nnnnmmmm0101 Unsigned, Rn × Rm → MACH,
MACL

32 × 32 → 64 bits

2 ― Yes Yes

DT Rn 0100nnnn00010000 Rn - 1 → Rn; when Rn = 0, 1 → T

When Rn ≠ 0, 0 → T

1 Com-
parison
result

Yes Yes

EXTS.B Rm, Rn 0110nnnnmmmm1110 Rm sign-extended from byte → Rn 1 ― Yes Yes

EXTS.W Rm, Rn 0110nnnnmmmm1111 Rm sign-extended from word → Rn 1 ― Yes Yes

EXTU.B Rm, Rn 0110nnnnmmmm1100 Rm zero-extended from byte → Rn 1 ― Yes Yes

EXTU.W Rm, Rn 0110nnnnmmmm1101 Rm zero-extended from word → Rn 1 ― Yes Yes

MAC.L @Rm+,
@Rn+

0000nnnnmmmm1111 Signed, (Rn) × (Rm) + MAC
→ MAC

32 × 32 + 64 → 64 bits

4 ― Yes Yes

MAC.W @Rm+,
@Rn+

0100nnnnmmmm1111 Signed, (Rn) × (Rm) + MAC
→ MAC

16 × 16 + 64 → 64 bits

3 ― Yes Yes

MUL.L Rm, Rn 0000nnnnmmmm0111 Rn × Rm → MACL

32 × 32 → 32 bits

2 ― Yes Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 60 of 484
REJ09B0051-0300

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

MULR R0, Rn 0100nnnn10000000 R0 × Rn → Rn

32 × 32 → 32 bits

2 Yes

MULS.W Rm, Rn 0010nnnnmmmm1111 Signed, Rn × Rm → MACL

16 × 16 → 32 bits

1 ― Yes Yes

MULU.W Rm, Rn 0010nnnnmmmm1110 Unsigned, Rn × Rm → MACL

16 × 16 → 32 bits

1 ― Yes Yes

NEG Rm, Rn 0110nnnnmmmm1011 0 - Rm → Rn 1 ― Yes Yes

NEGC Rm, Rn 0110nnnnmmmm1010 0 - Rm - T → Rn, borrow → T 1 Borrow Yes Yes

SUB Rm, Rn 0011nnnnmmmm1000 Rn - Rm → Rn 1 ― Yes Yes

SUBC Rm, Rn 0011nnnnmmmm1010 Rn - Rm - T → Rn, borrow → T 1 Borrow Yes Yes

SUBV Rm, Rn 0011nnnnmmmm1011 Rn - Rm → Rn, underflow → T 1 Overflow Yes Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 61 of 484
REJ09B0051-0300

5.1.3 Logic Operation Instructions

Table 5.5 Logic Operation Instructions

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

AND Rm, Rn 0010nnnnmmmm1001 Rn & Rm → Rn 1 ― Yes Yes

AND #imm, R0 11001001iiiiiiii R0 & imm → R0 1 ― Yes Yes

AND.B #imm, @(R0, GBR) 11001101iiiiiiii (R0+GBR) & imm
→ (R0+GBR)

3 ― Yes Yes

NOT Rm, Rn 0110nnnnmmmm0111 ~ Rm → Rn 1 ― Yes Yes

OR Rm, Rn 0010nnnnmmmm1011 Rn | Rm → Rn 1 ― Yes Yes

OR #imm, R0 11001011iiiiiiii R0 | imm → R0 1 ― Yes Yes

OR.B #imm, @(R0, GBR) 11001111iiiiiiii (R0+GBR) | imm → (R0+GBR) 3 ― Yes Yes

TAS.B @Rn 0100nnnn00011011 When (Rn) = 0, 1→T,
otherwise 0 → T,
1 → MSB of (Rn)

3 Test
result

Yes Yes

TST Rm, Rn 0010nnnnmmmm1000 Rn & Rm; when result = 0,
1 → T, otherwise 0 → T

1 Test
result

Yes Yes

TST #imm, R0 11001000iiiiiiii R0 & imm; when result = 0,
1 → T, otherwise 0 → T

1 Test
result

Yes Yes

TST.B #imm, @(R0, GBR) 11001100iiiiiiii (R0 + GBR) & imm;
when result = 0, 1 → T,
otherwise 0 → T

3 Test
result

Yes Yes

XOR Rm, Rn 0010nnnnmmmm1010 Rn ^ Rm → Rn 1 ― Yes Yes

XOR #imm, R0 11001010iiiiiiii R0 ^ imm → R0 1 ― Yes Yes

XOR.B #imm, @(R0, GBR) 11001110iiiiiiii (R0+GBR) ^ imm →
(R0+GBR)

3 ― Yes Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 62 of 484
REJ09B0051-0300

5.1.4 Shift Instructions

Table 5.6 Shift Instructions

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

ROTL Rn 0100nnnn00000100 T ← Rn ← MSB 1 MSB Yes Yes

ROTR Rn 0100nnnn00000101 LSB → Rn → T 1 LSB Yes Yes

ROTCL Rn 0100nnnn00100100 T ← Rn ← T 1 MSB Yes Yes

ROTCR Rn 0100nnnn00100101 T → Rn → T 1 LSB Yes Yes

SHAD Rm, Rn 0100nnnnmmmm1100 When Rm ≥ 0, Rn<<Rm → Rn

When Rm < 0, Rn>>|Rm| → [MSB →
Rn]

1 ― Yes

SHAL Rn 0100nnnn00100000 T ← Rn ← 0 1 MSB Yes Yes

SHAR Rn 0100nnnn00100001 MSB → Rn → T 1 LSB Yes Yes

SHLD Rm, Rn 0100nnnnmmmm1101 When Rm ≥ 0, Rn<<Rm → Rn

When Rm < 0, Rn>>|Rm| → [0 → Rn]

1 ― Yes

SHLL Rn 0100nnnn00000000 T ← Rn ← 0 1 MSB Yes Yes

SHLR Rn 0100nnnn00000001 0 → Rn → T 1 LSB Yes Yes

SHLL2 Rn 0100nnnn00001000 Rn<<2 → Rn 1 ― Yes Yes

SHLR2 Rn 0100nnnn00001001 Rn>>2 → Rn 1 ― Yes Yes

SHLL8 Rn 0100nnnn00011000 Rn<<8 → Rn 1 ― Yes Yes

SHLR8 Rn 0100nnnn00011001 Rn>>8 → Rn 1 ― Yes Yes

SHLL16 Rn 0100nnnn00101000 Rn<<16 → Rn 1 ― Yes Yes

SHLR16 Rn 0100nnnn00101001 Rn>>16 → Rn 1 ― Yes Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 63 of 484
REJ09B0051-0300

5.1.5 Branch Instructions

Table 5.7 Branch Instructions

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

BF label 10001011dddddddd When T = 0, disp × 2 + PC → PC,
when T = 1, nop

3/1* ― Yes Yes

BF/S label 10001111dddddddd Delayed branch, when T = 0, disp
× 2 + PC → PC, when T = 1, nop

2/1* ― Yes Yes

BT label 10001001dddddddd When T = 1, disp × 2 + PC → PC,
when T = 0, nop

3/1* ― Yes Yes

BT/S label 10001101dddddddd Delayed branch, when T = 1, disp
× 2 + PC → PC, when T = 0, nop

2/1* ― Yes Yes

BRA label 1010dddddddddddd Delayed branch, disp × 2 + PC →
PC

2 ― Yes Yes

BRAF Rm 0000mmmm00100011 Delayed branch, Rm + PC → PC 2 ― Yes Yes

BSR label 1011dddddddddddd Delayed branch, PC → PR, disp ×
2 + PC → PC

2 ― Yes Yes

BSRF Rm 0000mmmm00000011 Delayed branch, PC → PR, Rm +
PC → PC

2 ― Yes Yes

JMP @Rm 0100mmmm00101011 Delayed branch, Rm → PC 2 ― Yes Yes

JSR @Rm 0100mmmm00001011 Delayed branch, PC → PR,
Rm → PC

2 ― Yes Yes

JSR/N @Rm 0100mmmm01001011 PC - 2 → PR, Rm → PC 3 ― Yes

JSR/N @@(disp8, TBR) 10000011dddddddd PC - 2 → PR, (disp×4+TBR) → PC 5 ― Yes

RTS 0000000000001011 Delayed branch, PR → PC 2 ― Yes Yes

RTS/N 0000000001101011 PR → PC 3 ― Yes

RTV/N     Rm 0000mmmm01111011 Rm → R0, PR → PC 3 ― Yes

Note:  * One state when the program does not branh.



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 64 of 484
REJ09B0051-0300

5.1.6 System Control Instructions

Table 5.8 System Control Instructions

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

CLRT 0000000000001000 0 → T 1 0 Yes Yes

CLRMAC 0000000000101000 0 → MACH, MACL 1 ― Yes Yes

LDBANK @Rm, R0 0100mmmm11100101 (Specified register bank entry)
→ R0

6 ― Yes

LDC Rm, SR 0100mmmm00001110 Rm → SR 3 LSB Yes Yes

LDC Rm, TBR 0100mmmm01001010 Rm → TBR 1 ― Yes

LDC Rm, GBR 0100mmmm00011110 Rm → GBR 1 ― Yes Yes

LDC Rm, VBR 0100mmmm00101110 Rm → VBR 1 ― Yes Yes

LDC.L @Rm+, SR 0100mmmm00000111 (Rm) → SR, Rm + 4 → Rm 5 LSB Yes Yes

LDC.L @Rm+, GBR 0100mmmm00010111 (Rm) → GBR, Rm + 4 → Rm 1 ― Yes Yes

LDC.L @Rm+, VBR 0100mmmm00100111 (Rm) → VBR, Rm + 4 → Rm 1 ― Yes Yes

LDS Rm, MACH 0100mmmm00001010 Rm → MACH 1 ― Yes Yes

LDS Rm, MACL 0100mmmm00011010 Rm → MACL 1 ― Yes Yes

LDS Rm, PR 0100mmmm00101010 Rm → PR 1 ― Yes Yes

LDS.L @Rm+, MACH 0100mmmm00000110 (Rm) → MACH, Rm + 4 → Rm 1 ― Yes Yes

LDS.L @Rm+, MACL 0100mmmm00010110 (Rm) → MACL, Rm + 4 → Rm 1 ― Yes Yes

LDS.L @Rm+, PR 0100mmmm00100110 (Rm) → PR, Rm + 4 → Rm 1 ― Yes Yes

NOP 0000000000001001 No operation 1 ― Yes Yes

RESBANK 0000000001011011 Bank → R0 to R14, GBR,
MACH, MACL, PR

9* ― Yes

RTE 0000000000101011 Delayed branch, stack area →
PC/SR

6 ― Yes Yes

SETT 0000000000011000 1 → T 1 1 Yes Yes

SLEEP 0000000000011011 Sleep 5 ― Yes Yes

STBANK R0, @Rn 0100nnnn11100001 R0 → (specified register bank
entry)

7 ― Yes

STC SR, Rn 0000nnnn00000010 SR → Rn 2 ― Yes Yes

STC TBR, Rn 0000nnnn01001010 TBR → Rn 1 ― Yes

STC GBR, Rn 0000nnnn00010010 GBR → Rn 1 ― Yes Yes

STC VBR, Rn 0000nnnn00100010 VBR → Rn 1 ― Yes Yes

STC.L SR, @- Rn 0100nnnn00000011 Rn - 4 → Rn, SR → (Rn) 2 ― Yes Yes

STC.L GBR, @- Rn 0100nnnn00010011 Rn - 4 → Rn, GBR → (Rn) 1 ― Yes Yes

STC.L VBR, @- Rn 0100nnnn00100011 Rn - 4 → Rn, VBR → (Rn) 1 ― Yes Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 65 of 484
REJ09B0051-0300

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

STS MACH, Rn 0000nnnn00001010 MACH → Rn 1 ― Yes Yes

STS MACL, Rn 0000nnnn00011010 MACL → Rn 1 ― Yes Yes

STS PR, Rn 0000nnnn00101010 PR → Rn 1 ― Yes Yes

STS.L MACH, @-Rn 0100nnnn00000010 Rn - 4 → Rn, MACH → (Rn) 1 ― Yes Yes

STS.L MACL, @-Rn 0100nnnn00010010 Rn - 4 → Rn, MACL → (Rn) 1 ― Yes Yes

STS.L PR, @-Rn 0100nnnn00100010 Rn - 4 → Rn, PR → (Rn) 1 ― Yes Yes

TRAPA #imm 11000011iiiiiiii PC/SR → stack area, (imm × 4
+ VBR) → PC

5 ― Yes Yes

Notes: The execution cycles shown in the table are minimums. The actual number of cycles may be increased when (1)
contention occurs between instruction fetches and data access, or (2) when the destination register of the load
instruction (memory → register) and the register used by the next instruction are the same.
* In the event of bank overflow, the number of states is 19.



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 66 of 484
REJ09B0051-0300

5.1.7 Floating-Point Instructions

Table 5.9 Floating-Point Instructions

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

FABS FRn 1111nnnn01011101 |FRn| → FRn 1 ― Yes Yes

FABS DRn 1111nnn001011101 |DRn| → DRn 1 ― Yes

FADD FRm, FRn 1111nnnnmmmm0000 FRn + FRm → FRn 1 ― Yes Yes

FADD DRm, DRn 1111nnn0mmm00000 DRn + DRm → DRn 6 ― Yes

FCMP/EQ FRm, FRn 1111nnnnmmmm0100 (FRn=FRm)? 1:0 → T 1 Com-
parison
result

Yes Yes

FCMP/EQ DRm, DRn 1111nnn0mmm00100 (DRn=DRm)? 1:0 → T 2 Com-
parison
result

Yes

FCMP/GT FRm, FRn 1111nnnnmmmm0101 (FRn>FRm)? 1:0 → T 1 Com-
parison
result

Yes Yes

FCMP/GT DRm, DRn 1111nnn0mmm00101 (DRn>DRm)? 1:0 → T 2 Com-
parison
result

Yes

FCNVDS DRm, FPUL 1111mmm010111101 (float) DRm → FPUL 2 ― Yes

FCNVSD FPUL, DRn 1111nnn010101101 (double) FPUL → DRn 2 ― Yes

FDIV FRm, FRn 1111nnnnmmmm0011 FRn/FRm → FRn 10 ― Yes Yes

FDIV DRm, DRn 1111nnn0mmm00011 DRn/DRm → DRn 23 ― Yes

FLDI0 FRn 1111nnnn10001101 0 × 00000000 → FRn 1 ― Yes Yes

FLDI1 FRn 1111nnnn10011101 0 × 3F800000 → FRn 1 ― Yes Yes

FLDS FRm, FPUL 1111mmmm00011101 FRm → FPUL 1 ― Yes Yes

FLOAT FPUL,FRn 1111nnnn00101101 (float) FPUL → FRn 1 ― Yes Yes

FLOAT FPUL,DRn 1111nnn000101101 (double) FPUL → DRn 2 ― Yes

FMAC FR0,FRm,FRn 1111nnnnmmmm1110 FR0 × FRm + FRn → FRn 1 ― Yes Yes

FMOV FRm, FRn 1111nnnnmmmm1100 FRm → FRn 1 ― Yes Yes

FMOV DRm, DRn 1111nnn0mmm01100 DRm → DRn 2 ― Yes

FMOV.S @(R0, Rm), FRn 1111nnnnmmmm0110 (R0+Rm) → FRn 1 ― Yes Yes

FMOV.D @(R0, Rm), DRn 1111nnn0mmmm0110 (R0+Rm) → DRn 2 ― Yes

FMOV.S @Rm+, FRn 1111nnnnmmmm1001 (Rm) → FRn, Rm+ = 4 1 ― Yes Yes

FMOV.D @Rm+, DRn 1111nnn0mmmm1001 (Rm) → DRn, Rm+ = 8 2 ― Yes

FMOV.S @Rm, FRn 1111nnnnmmmm1000 (Rm) → FRn 1 ― Yes Yes

FMOV.D @Rm, DRn 1111nnn0mmmm1000 (Rm) → DRn 2 ― Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 67 of 484
REJ09B0051-0300

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

FMOV.S @(disp12,Rm),FRn 0011nnnnmmmm0001

0111dddddddddddd

(disp×4+Rm) → FRn 1 ― Yes

FMOV.D @(disp12,Rm),DRn 0011nnn0mmmm0001

0111dddddddddddd

(disp×8+Rm) → DRn 2 ― Yes

FMOV.S FRm, @( R0,Rn ) 1111nnnnmmmm0111 FRm → (R0+Rn) 1 ― Yes Yes

FMOV.D DRm, @( R0,Rn ) 1111nnnnmmm00111 DRm → (R0+Rn) 2 ― Yes

FMOV.S FRm, @-Rn 1111nnnnmmmm1011 Rn- = 4, FRm → (Rn) 1 ― Yes Yes

FMOV.D DRm, @-Rn 1111nnnnmmm01011 Rn- = 8, DRm → (Rn) 2 ― Yes

FMOV.S FRm, @Rn 1111nnnnmmmm1010 FRm → (Rn) 1 ― Yes Yes

FMOV.D DRm, @Rn 1111nnnnmmm01010 DRm → (Rn) 2 ― Yes

FMOV.S FRm, @(disp12,Rn) 0011nnnnmmmm00010
011dddddddddddd

FRm → (disp×4+Rn) 1 ― Yes

FMOV.D DRm, @(disp12,Rn) 0011nnnnmmm000010
011dddddddddddd

DRm → (disp×8+Rn) 2 ― Yes

FMUL FRm, FRn 1111nnnnmmmm0010 FRn × FRm → FRn 1 ― Yes Yes

FMUL DRm, DRn 1111nnn0mmm00010 DRn × DRm → DRn 6 ― Yes

FNEG FRn 1111nnnn01001101 -FRn → FRn 1 ― Yes Yes

FNEG DRn 1111nnn001001101 -DRn → DRn 1 ― Yes

FSCHG 1111001111111101 FPSCR.SZ = ~ FPSCR.SZ 1 ― Yes

FSQRT FRn 1111nnnn01101101 √FRn → FRn 9 ― Yes

FSQRT DRn 1111nnn001101101 √DRn → DRn 22 ― Yes

FSTS FPUL,FRn 1111nnnn00001101 FPUL → FRn 1 ― Yes Yes

FSUB FRm, FRn 1111nnnnmmmm0001 FRn - FRm → FRn 1 ― Yes Yes

FSUB DRm, DRn 1111nnn0mmm00001 DRn - DRm → DRn 6 ― Yes

FTRC FRm, FPUL 1111mmmm00111101 (long) FRm → FPUL 1 ― Yes Yes

FTRC DRm, FPUL 1111mmm000111101 (long) DRm → FPUL 2 ― Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 68 of 484
REJ09B0051-0300

5.1.8 FPU-Related CPU Instructions

Table 5.10 FPU-Related CPU Instructions

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

LDS Rm,FPSCR 0100mmmm01101010 Rm → FPSCR 1 ― Yes Yes

LDS Rm,FPUL 0100mmmm01011010 Rm → FPUL 1 ― Yes Yes

LDS.L @Rm+, FPSCR 0100mmmm01100110 (Rm) → FPSCR, Rm+ = 4 1 ― Yes Yes

LDS.L @Rm+, FPUL 0100mmmm01010110 (Rm) → FPUL, Rm+ = 4 1 ― Yes Yes

STS FPSCR, Rn 0000nnnn01101010 FPSCR → Rn 1 ― Yes Yes

STS FPUL,Rn 0000nnnn01011010 FPUL → Rn 1 ― Yes Yes

STS.L FPSCR,@-Rn 0100nnnn01100010 Rn- = 4, FPCSR → (Rn) 1 ― Yes Yes

STS.L FPUL,@-Rn 0100nnnn01010010 Rn- = 4, FPUL → (Rn) 1 ― Yes Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 69 of 484
REJ09B0051-0300

5.1.9 Bit Manipulation Instructions

Table 5.11 Bit Manipulation Instructions

Compatibility

Instruction Code Operation Cycles T Bit
SH2E SH4

New
SH-2A/
SH2A-
FPU

BAND.B #imm3,@(disp12,Rn) 0011nnnn0iii1001

0100dddddddddddd

(imm of (disp+Rn)) & T
→ T

3 Opera-
tion
result

Yes

BANDNOT.B #imm3,@(disp12,Rn) 0011nnnn0iii1001

1100dddddddddddd

~ (imm of (disp+Rn)) &
T → T

3 Opera-
tion
result

Yes

BCLR.B #imm3,@(disp12,Rn) 0011nnnn0iii1001

0000dddddddddddd

0 → (imm of (disp+Rn)) 3 ― Yes

BCLR #imm3, Rn 10000110nnnn0iii 0→ imm of Rn 1 ― Yes

BLD.B #imm3,@(disp12,Rn) 0011nnnn0iii1001

0011dddddddddddd

(imm of (disp+Rn)) → T 3 Opera-
tion
result

Yes

BLD #imm3, Rn 10000111nnnn1iii imm of Rn → T 1 Opera-
tion
result

Yes

BLDNOT.B #imm3,@(disp12,Rn) 0011nnnn0iii1001

1011dddddddddddd

~ (imm of (disp+Rn)) →
T

3 Opera-
tion
result

Yes

BOR.B #imm3,@(disp12,Rn) 0011nnnn0iii1001

0101dddddddddddd

(imm of (disp+ Rn)) | T
→ T

3 Opera-
tion
result

Yes

BORNOT.B #imm3,@(disp12,Rn) 0011nnnn0iii1001

1101dddddddddddd

~ (imm of (disp+ Rn)) |
T → T

3 Opera-
tion
result

Yes

BSET.B #imm3,@(disp12,Rn) 0011nnnn0iii1001

0001dddddddddddd

1 → (imm of (disp+Rn)) 3 ― Yes

BSET #imm3, Rn 10000110nnnn1iii 1 → imm of Rn 1 ― Yes

BST.B #imm3,@(disp12,Rn) 0011nnnn0iii1001

0010dddddddddddd

T → (imm of (disp+Rn)) 3 ― Yes

BST #imm3, Rn 10000111nnnn0iii T → imm of Rn 1 ― Yes

BXOR.B #imm3, @(disp12, Rn) 0011nnnn0iii1001

0110dddddddddddd

(imm of (disp+ Rn)) ^ T
→ T

3 Opera-
tion
result

Yes



Section 5   Instruction Set

Rev. 3.00  Jul 08, 2005  page 70 of 484
REJ09B0051-0300



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 71 of 484
REJ09B0051-0300

Section 6   Instruction Descriptions

6.1 Overview of New Instructions

In the SH-2A/SH2A-FPU, new instructions have been added in vacant locations other than
instruction codes assigned to SH-2E CPU instructions (instruction codes with upper 4 bits of 0000
to 1110) and SH4 FPU instructions (instruction codes with upper 4 bits of 1111).  However, the
SH-2A does not support the following SH4 FPU instructions: (a) FMOV instructions specifying
XDm/XDn, (b) the FRCHG instruction, and (c) FIPR, and FTRV instructions.

This section gives detailed descriptions of the new instructions.

SH-2A

0000 . . .

to

1110 . . .

1111 . . .

CPU instructions

(SH2E + new instructions)

FPU instructions

(SH4, excluding (a), (b), and (c))

The new instructions are those described in (1) to (14) below.  (1) to (3) are 32-bit fixed-length
instructions, and (4) to (14) are 16-bit fixed-length instructions.

(1)  Immediate Transfer Instructions

MOVI20, MOVI20S

These instructions transfer 20-bit immediate data in the instruction code to a register.
Combination with one of these instructions simplifies generation of a 28-bit address, making it
possible to specify on-chip memory addresses for a maximum of 256 MB.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 72 of 484
REJ09B0051-0300

(2)  Structure Access Instructions

MOV.B/W/L Rm, @(disp12, Rn), MOV.B/W/L @(disp12, Rm), Rn
MOVU.B/W @(disp12, Rm), Rn
FMOV.S FRm, @(disp12, Rn), FMOV.S @(disp12, Rm), FRn
FMOV.D DRm, @(disp12, Rn), FMOV.D @(disp12, Rm), DRn

These instructions reference memory by specifying a 12-bit displacement located in the instruction
code.  An MOVU unsigned load instruction that automatically performs execution of zero
extension has also been added.

(3)  Bit Manipulation Instructions (Operating on Memory)

BAND.B #imm3, @(disp12, Rn), BOR.B #imm3, @(disp12, Rn)
BCLR.B #imm3, @(disp12, Rn), BSET.B #imm3, @(disp12, Rn)
BST.B #imm3, @(disp12, Rn),  BLD.B #imm3, @(disp12, Rn)
BXOR.B #imm3, @(disp12, Rn)
BANDNOT.B #imm3, @(disp12, Rn), BORNOT.B #imm3, @(disp12, Rn)
BLDNOT.B #imm3, @(disp12, Rn)

The BAND.B, BOR.B, and BXOR.B instructions perform logical operations between a bit in
memory and the T bit, and store the result in the T bit.  The BCLR.B and BSET.B instructions
manipulate a bit in memory.  The BST.B and BLD.B instructions execute a transfer between a bit
in memory and the T bit.  The BANDNOT.B and BORNOT.B instructions perform logical
operations between the value resulting from inverting a bit in memory and the T bit, and store the
result in the T bit.  The BLDNOT.B instruction inverts a bit in memory and stores the result in the
T bit.  Bits other than the specified bit are not affected.

(4)  Bit Manipulation Instructions (Operating on a General Register)

BCLR #imm3, Rn, BSET #imm3, Rn
BST #imm3, Rn ,  BLD #imm3, Rn

The BCLR and BSET instructions manipulate one of the LSB 8 bits of a general register Rn.  The
BST and BLD instructions execute a transfer between one of the LSB 8 bits of a general register
Rn and the T bit.  Bits other than the specified bit are not affected.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 73 of 484
REJ09B0051-0300

(5)  Multiplication Result Rn Storage Instruction

MULR

MULR performs a 32-bit x 32-bit multiplication, and stores the lower 32 bits of the result in a
general register Rn.

(6)  Batch Division Instructions

DIVS, DIVU

These instructions perform batch 32-bit ÷ 32-bit division.  The DIVU instruction performs
division of unsigned data, and the DIVS instruction performs division of signed data.

(7)  Saturation Value Comparison Instructions

CLIPS, CLIPU

These instructions perform a comparison with a saturation value, and store the saturation upper-
limit value in a general register Rn if the general register Rn contents exceed the saturation upper-
limit value, or store the saturation lower-limit value in general register Rn if the general register
Rn contents are less than the saturation upper-limit value.  Only byte and word saturation values
are supported.

(8)  Barrel Shift Instructions

SHAD, SHLD

These instructions shift arbitrary bits.  Two kinds of instructions are provided, for an arithmetic
shift and a logical shift.

(9)  Multiple Register Save/Restore Instructions

MOVML, MOVMU

These instructions save a number of consecutive registers to memory, or restore a number of
consecutive registers from memory.  It is possible to specify a general register Rn, and to save or
restore consecutive general registers higher than or lower than the specified Rn.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 74 of 484
REJ09B0051-0300

(10)  T Bit Inversion and Transfer Instructions

MOVRT, NOTT

These instructions invert the T bit and transfer the resulting value to a general register Rn or the T
bit.

(11)  Register Bank Related Instructions

RESBANK, STBANK, LDBANK

These are register bank related instructions that are provided in order to speed up interrupt
handling.

(12)  Reverse Stack Transfer Instructions

MOV.B/W/L

These are transfer instructions in which the stack expansion direction is reversed.

(13)  Unconditional Branch Instructions with No Delay Slot

JSR/N, RTS/N

Instructions that do not have a delay slot are provided in order to reduce the code size by cutting
down on the number of unnecessary NOP instructions.

(14)  Cache-Related Instruction

PREF

An SH3-DSP cache-related instruction is provided.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 75 of 484
REJ09B0051-0300

6.2 Format of Instruction Descriptions

Format of this Section: The format used for describing instructions is as shown below.

Instruction Name Instruction Function (Explanation  Instruction Type
Instruction Function of Instruction Name) Instruction Set

Compatibility

Format Abstract Code Cycles T Bit

Shown in assembler
input format.  imm and
disp are numeric
values, expressions,
or symbols.

Summarizes the
operation.

Shown in MSB ↔
LSB order.

Value in case
of no-wait
operation.

Shows the
value of the T
bit after
execution of
the instruction.

Description

Describes the operation of the instruction.

Notes

Mentions points requiring particular attention when using the instruction.

Operation

Shows the operation of the instruction in C.  Provided as a reference to explain the operation of the
instruction.  The use of the following resources is assumed here.

unsigned  char     Read_Byte (unsigned  long  Addr);
unsigned  short    Read_Word (unsigned  long  Addr);
unsigned  int      Read_Int  (unsigned  long  Addr);
unsigned  long     Read_Long (unsigned  long  Addr);
unsigned  double   Read_Quad (unsigned  long  Addr);
The size of address Addr is returned.  A word read from other than a 2n address or a longword read from
other than a 4n address will be detected as an address error.

unsigned  long     Read_Bank_Long (unsigned  long  Addr);
The contents of the register bank entry indicated by the contents of address Addr are returned.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 76 of 484
REJ09B0051-0300

unsigned  char    Write_Byte (unsigned long Addr, unsigned long Data);
unsigned  short   Write_Word (unsigned long Addr, unsigned long Data);
unsigned  int     Write_Int (unsigned long Addr, unsigned long Data);
unsigned  long    Write_Long (unsigned long Addr, unsigned long Data);
unsigned  double  Write_Quad (unsigned long Addr, unsigned long Data);
Data Data is written to address Addr using the respective size.  A word write to other than a 2n address or a
longword write to other than a 4n address will be detected as an address error.

unsigned  long  Write_Bank_Long (unsigned  long Add, unsigned long
Data);
Data Data is written to the register bank entry indicated by the contents of address Addr.

unsigned  long  R[16];
unsigned  long  SR, GBR, VBR, TBR;
unsigned  long  MACH, MACL, PR;
unsigned  long  PC;
Respective registers

struct  BANK {
   unsigned  long  Rn_BANK[15];
   unsigned  long  GBR_BANK;
   unsigned  long  MACH_BANK;
   unsigned  long  MACL_BANK;
   unsigned  long  PR_BANK;
   unsigned  long  IVN;
} ;
BANK  Register_Bank[512];
Register bank structure definition
(VTO: Interrupt vector table address offset)

struct SR0 {
    unsigned  long  dummy0:17;
    unsigned  long  BO0:1
    unsigned  long  CS0:1;
    unsigned  long  dummy1:3;
    unsigned  long  M0:1;
    unsigned  long  Q0:1;
    unsigned  long  I0:4;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 77 of 484
REJ09B0051-0300

    unsigned  long  dummy2:2;
    unsigned  long  S0:1;
    unsigned  long  T0:1;
} ;
SR structure definition

#define BO ((* (struct SR0 *) (&SR)).BO0)
#define CS ((* (struct SR0 *) (&SR)).CS0)
#define M ((* (struct SR0 *) (&SR)).M0)
#define Q ((* (struct SR0 *) (&SR)).Q0)
#define I ((* (struct SR0 *) (&SR)).I0)
#define S ((* (struct SR0 *) (&SR)).S0)
#define T ((* (struct SR0 *) (&SR)).T0)
Definition of bits in SR

Error (char *er);
Error indication function

These are floating-point number definition statements.

#define PZERO       0
#define NZERO       1
#define DENORM      2
#define NORM        3
#define PINF        4
#define NINF        5
#define qNaN        6
#define sNaN        7
#define EQ  0
#define GT 1
#define LT   2
#define UO    3
#define INVALID     4
#define FADD        0
#define FSUB        1

#define CAUSE       0x0003f000  /* FPSCR(bit17-12) */



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 78 of 484
REJ09B0051-0300

#define SET_E       0x00020000  /* FPSCR(bit17) */
#define SET_V       0x00010040  /* FPSCR(bit16,6) */
#define SET_Z       0x00008020  /* FPSCR(bit15,5) */
#define SET_O       0x00004010  /* FPSCR(bit14,4) */
#define SET_U       0x00002008  /* FPSCR(bit13,3) */
#define SET_I       0x00001004  /* FPSCR(bit12,2) */
#define ENABLE_VOUI 0x00000b80  /* FPSCR(bit11,9-7) */
#define ENABLE_V    0x00000800  /* FPSCR(bit11) */
#define ENABLE_Z    0x00000400  /* FPSCR(bit10) */
#define ENABLE_OUI  0x00000380  /* FPSCR(bit9-7) */
#define ENABLE_I    0x00000080  /* FPSCR(bit7) */
#define FLAG        0x0000007C  /* FPSCR(bit6-2) */

#define FPSCR_FR    FPSCR>>21&1
#define FPSCR_PR    FPSCR>>19&1
#define FPSCR_DN    FPSCR>>18&1
#define FPSCR_I     FPSCR>>12&1
#define FPSCR_RM    FPSCR&1
#define FR_HEX      frf.l[ FPSCR_FR]
#define FR          frf.f[ FPSCR_FR]
#define DR_HEX      frf.f[ FPSCR_FR]
#define DR       frf.d[ FPSCR_FR]

union {
      int  l[2][16];
      float  f[2][16];
      double d[2][8];
} frf;
int FPSCR;

int sign_of(int n)
{
      return(FR_HEX[n]>>31);
}
int data_type_of(int n) {



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 79 of 484
REJ09B0051-0300

int abs;
     abs = FR_HEX[n] & 0x7fffffff;
     if(FPSCR_PR == 0) { /* Single-precision */
         if(abs < 0x00800000){
             if((FPSCR_DN == 1) || (abs == 0x00000000)){
                 if(sign_of(n) == 0)  {zero(n, 0); return(PZERO);}
                 else                 {zero(n, 1); return(NZERO);}
             }
             else                     return(DENORM);
         }
         else if(abs < 0x7f800000)    return(NORM);
         else if(abs == 0x7f800000) {
             if(sign_of(n) == 0)      return(PINF);
             else                     return(NINF);
         }
         else if(abs < 0x7fc00000)    return(qNaN);
         else                         return(sNaN);
     }
     else { /* Double-precision */
         if(abs < 0x00100000){
             if((FPSCR_DN == 1) ||

((abs == 0x00000000) && (FR_HEX[n+1] == 0x00000000)){
                 if(sign_of(n) == 0)  {zero(n, 0); return(PZERO);}
                 else                 {zero(n, 1); return(NZERO);}
            }
            else                 return(DENORM);
         }
         else if(abs < 0x7ff00000) return(NORM);
         else if((abs == 0x7ff00000) &&
                 (FR_HEX[n+1] == 0x00000000)) {
             if(sign_of(n) == 0) return(PINF);
             else                return(NINF);
         }
         else if(abs < 0x7ff80000) return(qNaN);
         else                      return(sNaN);



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 80 of 484
REJ09B0051-0300

     }
}
void register_copy(int m,n)
{
                         FR[n]   = FR[m];
     if(FPSCR_PR == 1)   FR[n+1] = FR[m+1];
}
void normal_faddsub(int m,n,type)
{
union {
     float f;
     int l;
}    dstf,srcf;
union {
     long d;
     int l[2];
}    dstd,srcd;
union {              /* �long double� format:   */
     long double x;   /*   1-bit sign      */
     int l[4];       /*  15-bit exponent  */
}    dstx;           /*  112-bit mantissa   */
     if(FPSCR_PR == 0) {
         if(type == FADD)     srcf.f =  FR[m];
         else                    srcf.f = -FR[m];
         dstd.d = FR[n]; /* Conversion from single-precision to double-precision */
         dstd.d += srcf.f;
         if(((dstd.d == FR[n]) && (srcf.f != 0.0)) ||
             ((dstd.d == srcf.f) && (FR[n] != 0.0))) {
             set_I();
             if(sign_of(m)^ sign_of(n)) {
                 dstd.l[1] -= 1;
                 if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;
             }
         }
         if(dstd.l[1] & 0x1fffffff) set_I();



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 81 of 484
REJ09B0051-0300

         dstf.f += srcf.f; /* Round to nearest */
         if(FPSCR_RM == 1) {
             dstd.l[1] &= 0xe0000000; /* Round to zero */
             dstf.f = dstd.d;
         }
         check_single_exception(&FR[n],dstf.f);
     } else {
         if(type == FADD)  srcd.d =  DR[m>>1];
         else              srcd.d = -DR[m>>1];
         dstx.x = DR[n>>1];
                      /* Conversion from double-precision to extended double-precision */
         dstx.x += srcd.d;
         if(((dstx.x == DR[n>>1]) && (srcd.d != 0.0)) ||
             ((dstx.x == srcd.d) && (DR[n>>1] != 0.0)) ) {
             set_I();
             if(sign_of(m)^ sign_of(n)) {
                 dstx.l[3] -= 1;
                 if(dstx.l[3] == 0xffffffff) {dstx.l[2] -= 1;
                 if(dstx.l[2] == 0xffffffff) {dstx.l[1] -= 1;
                 if(dstx.l[1] == 0xffffffff) {dstx.l[0] -= 1;}}}
             }
         }
         if((dstx.l[2] & 0x0fffffff) || dstx.l[3]) set_I();
         dst.d += srcd.d; /* Round to nearest */
         if(FPSCR_RM == 1) {
             dstx.l[2] &= 0xf0000000; /* Round to zero */
             dstx.l[3]  = 0x00000000;
             dst.d = dstx.x;
         }
         check_double_exception(&DR[n>>1] ,dst.d);
     }
}
void normal_fmul(int m,n)
{
union {



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 82 of 484
REJ09B0051-0300

     float f;
     int l;
}    tmpf;
union {
     double d;
     int l[2];
}    tmpd;
union {
     long double x;
     int l[4];
}    tmpx;
     if(FPSCR_PR == 0) {
         tmpd.d = FR[n]; /* Single-precision to double-precision */
         tmpd.d *= FR[m]; /* Precise creation */
         tmpf.f *= FR[m]; /* Round to nearest */
         if(tmpf.f != tmpd.d) set_I();
         if((tmpf.f > tmpd.d) && (FPSCR_RM == 1)) {
             tmpf.l -= 1; /* Round to zero */
         }
         check_single_exception(&FR[n],tmpf.f);
     } else {
         tmpx.x = DR[n>>1]; /* Single-precision to double-precision */
         tmpx.x *= DR[m>>1]; /* Precise creation */
         tmpd.d *= DR[m>>1]; /* Round to nearest */
         if(tmpd.d != tmpx.x) set_I();
         if(tmpd.d > tmpx.x) && (FPSCR_RM == 1)) {
             tmpd.l[1] -= 1; /* Round to zero */
             if(tmpd.l[1] == 0xffffffff) tmpd.l[0] -= 1;
         }
         check_double_exception(&DR[n>>1], tmpd.d);
     }
}
void check_single_exception(float *dst,result)
{
union {



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 83 of 484
REJ09B0051-0300

     float f;
     int l;
}    tmp;
float abs;
     if(result < 0.0)  tmp.l = 0xff800000; /* � infinity */
     else              tmp.l = 0x7f800000; /* + infinity */
     if(result == tmp.f) {
         set_O(); set_I();
         if(FPSCR_RM == 1) {
             tmp.l -= 1; /* Maximum value of normalized number */
             result = tmp.f;
         }
     }
     if(result < 0.0)  abs = -result;
     else              abs =  result;
     tmp.l = 0x00800000; /* Minimum value of normalized number */
     if(abs < tmp.f) {
         if((FPSCR_DN == 1) && (abs != 0.0)) {
             set_I();
             if(result < 0.0) result = -0.0; /* Zeroize denormalized number */
             else             result =  0.0;
         }
         if(FPSCR_I == 1) set_U();
     }
     if(FPSCR & ENABLE_OUI) fpu_exception_trap();
     else                    *dst = result;
}
void check_double_exception(double *dst,result)
{
union {
     double d;
     int l[2];
}    tmp;
double abs;
     if(result < 0.0)  tmp.l[0] = 0xfff00000; /* � infinity */



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 84 of 484
REJ09B0051-0300

     else              tmp.l[0] = 0x7ff00000; /* + infinity */
                       tmp.l[1] = 0x00000000;
     if(result == tmp.d)
         set_O(); set_I();
         if(FPSCR_RM == 1) {
             tmp.l[0] -= 1;
             tmp.l[1] = 0xffffffff;
             result = tmp.d; /* Maximum value of normalized number */
         }
     }
     if(result < 0.0)  abs = -result;
     else              abs =  result;
     tmp.l[0] = 0x00100000; /* Minimum value of normalized number */
     tmp.l[1] = 0x00000000;
     if(abs < tmp.d) {
         if((FPSCR_DN == 1) && (abs != 0.0)) {
             set_I();
             if(result < 0.0) result = -0.0;
                           /* Zeroize denormalized number */
             else             result =  0.0;
         }
         if(FPSCR_I == 1) set_U();
     }
     if(FPSCR & ENABLE_OUI) fpu_exception_trap();
     else                    *dst = result;
}
int check_product_invalid(int m,n)
{
     return(check_product_infinity(m,n)  &&
           ((data_type_of(m) == PZERO) || (data_type_of(n) == PZERO) ||
            (data_type_of(m) == NZERO) || (data_type_of(n) == NZERO)));
}
int check_product_infinity(int m,n)
{
     return((data_type_of(m) == PINF) || (data_type_of(n) == PINF) ||



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 85 of 484
REJ09B0051-0300

            (data_type_of(m) == NINF) || (data_type_of(n) == NINF));
}
int check_positive_infinity(int m,n)
{
     return(((check_product_infinity(m,n) && (~sign_of(m)^ sign_of(n)))
||
     ((check_product_infinity(m+1,n+1) && (~sign_of(m+1)^
sign_of(n+1))) ||
     ((check_product_infinity(m+2,n+2) && (~sign_of(m+2)^
sign_of(n+2))) ||
     ((check_product_infinity(m+3,n+3) && (~sign_of(m+3)^
sign_of(n+3))));
}
int check_negative_infinity(int m,n)
{
  return(((check_product_infinity(m,n) && (sign_of(m)^ sign_of(n))) ||
     ((check_product_infinity(m+1,n+1) && (sign_of(m+1)^ sign_of(n+1)))
||
     ((check_product_infinity(m+2,n+2) && (sign_of(m+2)^ sign_of(n+2)))
||
     ((check_ product_infinity(m+3,n+3) && (sign_of(m+3)^
sign_of(n+3))));
}
void clear_cause () {FPSCR &= ~CAUSE;}
void set_E() {FPSCR |= SET_E; fpu_exception_trap();}
void set_V() {FPSCR |= SET_V;}
void set_Z() {FPSCR |= SET_Z;}
void set_O() {FPSCR |= SET_O;}
void set_U() {FPSCR |= SET_U;}
void set_I() {FPSCR |= SET_I;}
void invalid(int n)
{
     set_V();
     if((FPSCR & ENABLE_V) == 0 qnan(n);
     else    fpu_exception_trap();
}
void dz(int n,sign)



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 86 of 484
REJ09B0051-0300

{
     set_Z();
     if((FPSCR & ENABLE_Z) == 0 inf(n,sign);
     else    fpu_exception_trap();
}
void zero(int n,sign)
{
     if(sign == 0)    FR_HEX [n]   = 0x00000000;
     else             FR_HEX [n]   = 0x80000000;
     if (FPSCR_PR==1) FR_HEX [n+1] = 0x00000000;
}
void inf(int n,sign) {
     if (FPSCR_PR==0) {
         if(sign == 0)  FR_HEX [n]   = 0x7f800000;
         else           FR_HEX [n]   = 0xff800000;
     } else {
         if(sign == 0)  FR_HEX [n]   = 0x7ff00000;
         else           FR_HEX [n]   = 0xfff00000;
                        FR_HEX [n+1] = 0x00000000;
     }
}
void qnan(int n)
{
     if (FPSCR_PR==0)  FR[n]   = 0x7fbfffff;
     else {            FR[n]   = 0x7ff7ffff;
                       FR[n+1] = 0xffffffff;
     }
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 87 of 484
REJ09B0051-0300

Example

An example is shown using assembler mnemonics, indicating the states before and after execution
of the instruction.

Italics (e.g., .align) indicate an assembler control instruction. The meaning of the assembler
control instructions is given below. For details, refer to the Cross-Assembler User�s Manual.

.org Location counter setting

.data.w Word integer data allocation

.data.l Longword integer data allocation

.sdata String data allocation

.align  2 2-byte boundary alignment

.align  4 4-byte boundary alignment

.align  32 32-byte boundary alignment

.arepeat  16 16-times repeat expansion

.arepeat  32 32-times repeat expansion

.aendr Count-specification repeat expansion end

Note: SH Series cross-assembler version 1.0 does not support conditional assembler functions.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 88 of 484
REJ09B0051-0300

6.3 New Instructions

6.3.1 BAND Bit AND Bit Manipulation Instruction
Bit Logical AND SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

BAND.B  #imm3, @(disp12,Rn) (<imm> of (disp+Rn)) & T
→ T

0011nnnn0iii10010100dddddddddddd 3 Operation
result

Description

ANDs a specified bit in memory at the address indicated by (disp + Rn) with the T bit, and stores
the result in the T bit.  The bit number is specified by 3-bit immediate data.  With this instruction,
data is read from memory as a byte unit.

BAND.B #imm3, @(disp12, Rn)

7 0

&T T

(disp+Rn)

Specified by #imm3



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 89 of 484
REJ09B0051-0300

Operation

BANDM (long d, long i, long n)  /*BAND.B #imm3, @(disp12, Rn) */
 {
   long disp, imm, temp, assignbit;

     disp = (0x00000FFF & (long)d);
     imm= (0x00000007&(long)i);
     temp= (long) Read_Byte (R[n]+disp);
     assignbit =(0x00000001<<imm)&temp;
     if((T==0)||(assignbit==0)) T=0;
     else T=1;
     PC+=4;
}

Examples:

  BAND.B #H'5,@(2,R0) ; Before execution: @(R0 + 2) = H'DF, T=1
; After execution: @(R0 + 2) = H'DF, T=0



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 90 of 484
REJ09B0051-0300

6.3.2 BANDNOT Bit ANDNOT Bit Manipulation Instruction
Bit NOT Logical AND SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

BANDNOT.B  #imm3,
@(disp12,Rn)

~ (<imm> of (disp+Rn)) & T
→ T

0011nnnn0iii10011100dddddddddddd 3 Operation
result

Description

ANDs the value obtained by inverting a specified bit of memory at the address indicated by (disp
+ Rn) with the T bit, and stores the result in the T bit.  The bit number is specified by 3-bit
immediate data.  With this instruction, data is read from memory as a byte unit.

BANDNOT.B #imm3, @(disp12, Rn)

7 0

&T T

(disp+Rn)

Specified by #imm3

Inversion

Operation
BANDNOTM (long d, long i, long n)  /*BANDNOT.B #imm3, @(disp12, Rn) */
 {
   long disp, imm, temp, assignbit;

     disp = (0x00000FFF & (long)d);
     imm= (0x00000007&(long)i);
     temp= (long) Read_Byte (R[n]+disp);
     assignbit =(0x00000001<<imm)&temp;
     if((T==1)&&(assignbit==0)) T=1;
     else T=0;
     PC+=4;
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 91 of 484
REJ09B0051-0300

Examples:

BANDNOT.B #H'5,@(2,R0) ; Before execution: @(R0 + 2) = H'20, T = 1
; After execution: @(R0 + 2) = H'20, T = 0



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 92 of 484
REJ09B0051-0300

6.3.3 BCLR Bit CLeaR Bit Manipulation Instruction
Bit Clear SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

BCLR.B #imm3, @(disp12,Rn)

BCLR #imm3, Rn

0 → (<imm> of (disp+Rn))

0 → <imm> of  Rn

0011nnnn0iii10010000dddddddddddd
10000110nnnn0iii

3

1

―

―

Description

Clears a specified bit of memory at the address indicated by (disp + Rn), or of the LSB 8 bits of a
general register Rn.  The bit number is specified by 3-bit immediate data.  With the BCLR.B
instruction, after data is read from memory as a byte unit, clearing of the specified bit is executed,
and the resulting data is then written to memory as a byte unit.

BCLR.B #imm3, @(disp12, Rn)

0

7 0

(disp+Rn)

Specified by #imm3

BCLR #imm3, Rn

Rn
31

0

07

Lower 8 bits specified 
by #imm3



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 93 of 484
REJ09B0051-0300

Operation
BCLRM (long d, long i, long n)  /*BCLR.B #imm3, @(disp12, Rn) */
 {
   long disp, imm, temp;

     disp = (0x00000FFF & (long)d);
     imm= (0x00000007&(long)i);
     temp= (long) Read_Byte (R[n]+disp);
     temp&=(~(0x00000001<<imm));
     Write_Byte (R[n]+disp, temp);
     PC+=4;
 }

   BCLR (long i, long n)  /*BCLR #imm3, Rn */
 {
   long imm, temp;

   imm= (0x00000007 &(long)i);
   R[n]&=(~(0x00000001<<imm));
   PC+=2;
 }

Examples:

BCLR.B #H'5,@(2,R0) ; Before execution: @(R0 + 2) = H'FF
; After execution: @(R0 + 2) = H'DF

BCLR #H'4, R0 ; Before execution: @R0 = H'FFFFFFFF
; After execution: @R0 = H'FFFFFFFF



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 94 of 484
REJ09B0051-0300

6.3.4 BLD Bit LoaD Bit Manipulation Instruction
Bit Load SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

BLD.B #imm3, @(disp12,Rn) (<imm> of (disp+Rn)) → T 0011nnnn0iii10010011dddddddddddd 3 Operation
result

BLD #imm3, Rn <imm> of Rn → T 10000111nnnn1iii 1 Operation
result

Description

Stores a specified bit of memory at the address indicated by (disp + Rn), or of the LSB 8 bits of a
general register Rn, in the T bit.  The bit number is specified by 3-bit immediate data.  With the
BLD.B instruction, data is read from memory as a byte unit.

BLD.B #imm3, @(disp12, Rn)

T

7 0

(disp+Rn)

Specified by #imm3

BLD #imm3, Rn

Rn
31

Lower 8 bits specified 
by #imm3

07

T



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 95 of 484
REJ09B0051-0300

Operation
BLDM (long d, long i, long n)  /*BLD.B #imm3, @(disp12, Rn) */
 {
   long disp, imm, temp,assignbit;

  disp = (0x00000FFF & (long)d);
  imm= (0x00000007&(long)i);
  temp = (long) Read_Byte (R[n]+disp);
  assignbit=(0x00000001<<imm)&temp;
  if(assignbit==0) T=0;
  else T=1;
  PC+=4;
 }
   BLD (long i, long n)  /*BLD #imm3, Rn */
  {
   long imm, assignbit;

   imm= (0x00000007&(long)i);
   assignbit=(0x00000001<<imm)&R[n];
   if(assignbit ==0) T=0;
   else T=1;
   PC+=2;
  }

Examples:

BLD.B #H'5,@(2,R0) ; Before execution: @(R0 + 2) = H'20, T = 0
; After execution: @(R0 + 2) = H'20, T = 1

BLD #H'4,R0 ; Before execution: R0 = H'000000EF, T = 1
; After execution: R0 = H'000000EF, T = 0



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 96 of 484
REJ09B0051-0300

6.3.5 BLDNOT Bit LoaDNOT Bit Manipulation Instruction
Bit NOT Load SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

BLDNOT.B  #imm3,  @(disp12,Rn) ~ (<imm> of (disp+Rn))
→ T

0011nnnn0iii10011011dddddddddddd 3 Operation
result

Description

Inverts a specified bit of memory at the address indicated by (disp + Rn), and stores the resulting
value in the T bit.  The bit number is specified by 3-bit immediate data.  With the BLDNOT.B
instruction, data is read from memory as a byte unit.

BLDNOT.B #imm3, @(disp12, Rn)

T

7 0

(disp+Rn)

Specified by #imm3

Inversion

Operation
BLDNOTM (long d, long i, long n)  /*BLDNOT.B #imm3, @(disp12, Rn) */
 {
   long disp, imm, temp,assignbit;

  disp = (0x00000FFF & (long)d);
  imm= (0x00000007&(long)i);
  temp = (long) Read_Byte (R[n]+disp);
  assignbit=(0x00000001<<imm)&temp;
  if(assignbit==0) T=1;
  else T=0;
  PC+=4;
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 97 of 484
REJ09B0051-0300

Examples:

BLDNOT.B #H'5,@(2,R0) ; Before execution: @(R0 + 2) = H'20, T = 1
; After execution: @(R0 + 2) = H'20, T = 0



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 98 of 484
REJ09B0051-0300

6.3.6 BOR Bit OR Bit Manipulation Instruction
Bit Logical OR SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

BOR.B  #imm3, @(disp12,Rn) (<imm> of (disp+Rn))T
→ T

0011nnnn0iii10010101dddddddddddd 3 Operation
result

Description

ORs a specified bit in memory at the address indicated by (disp + Rn) with the T bit, and stores the
result in the T bit.  The bit number is specified by 3-bit immediate data.  With this instruction, data
is read from memory as a byte unit.

BOR.B #imm3, @(disp12, Rn)

7 0

|T T

(disp+Rn)

Specified by #imm3



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 99 of 484
REJ09B0051-0300

Operation
BORM (long d, long i, long n)  /*BOR.B #imm3, @(disp12, Rn) */
 {
   long disp, imm, temp, assignbit;

     disp = (0x00000FFF & (long)d);
     imm= (0x00000007&(long)i);
     temp= (long) Read_Byte (R[n]+disp);
     assignbit =(0x00000001<<imm)&temp;
     if((T==0)&&(assignbit==0)) T=0;
     else T=1;

     PC+=4;
 }

Examples:

BOR.B #H'5@,(2,R0) ; Before execution: @(R0,2) = H'20, T = 0
; After execution: @(R0,2) = H'20, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 100 of 484
REJ09B0051-0300

6.3.7 BORNOT Bit ORNOT Bit Manipulation Instruction
Bit NOT Logical OR SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

BORNOT.B  #imm3, @(disp12,Rn) ~ (<imm> of
(disp+Rn))T → T

0011nnnn0iii10011101dddddddddddd 3 Operation
result

Description

ORs the value obtained by inverting a specified bit of memory at the address indicated by (disp +
Rn) with the T bit, and stores the result in the T bit.  The bit number is specified by 3-bit
immediate data.  With this instruction, data is read from memory as a byte unit.

BORNOT.B #imm3, @(disp12, Rn)

7 0

|T T

(disp+Rn)

Specified by #imm3

Inversion



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 101 of 484
REJ09B0051-0300

Operation
BORNOTM (long d, long i, long n)  /*BORNOT.B #imm3, @(disp12, Rn) */
 {
   long disp, imm, temp, assignbit;

     disp = (0x00000FFF & (long)d);
     imm= (0x00000007&(long)i);
     temp= (long) Read_Byte (R[n]+disp);
     assignbit =(0x00000001<<imm)&temp;
     if((T==1)||(assignbit==0)) T=1;
     else T=0;

     PC+=4;
 }

Examples:

BORNOT.B #H'5,@(2,R0) ; Before execution: @(R0 + 2) = H'DF, T = 0
; After execution: @(R0 + 2) = H'DF, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 102 of 484
REJ09B0051-0300

6.3.8 BSET Bit SET Bit Manipulation Instruction
Bit Set SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

BSET.B #imm3, @(disp12,Rn)

BSET #imm3, Rn

1 → (<imm> of (disp+Rn))

1 → <imm> of  Rn

0011nnnn0iii10010001dddddddddddd
10000110nnnn1iii

3

1

�

�

Description

Sets to 1 a specified bit of memory at the address indicated by (disp + Rn), or of the LSB 8 bits of
a general register Rn.  The bit number is specified by 3-bit immediate data.  With the BSET.B
instruction, after data is read from memory as a byte unit, the specified bit is set to 1, and the
resulting data is then written to memory as a byte unit.

BSET.B #imm3, @(disp12, Rn)

1

7 0

(disp+Rn)

Specified by #imm3

BSET #imm3, Rn

Rn
31

Lower 8 bits specified 
by #imm3

1

07



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 103 of 484
REJ09B0051-0300

Operation
BSETM (long d, long i, long n)  /*BSET.B #imm3, @(disp12, Rn) */
 {
   long disp, imm, temp;

     disp = (0x00000FFF & (long)d);
     imm= (0x00000007&(long)i);
     temp= (long) Read_Byte (R[n]+disp);
     temp|=(0x00000001<<imm);
     Write_Byte (R[n]+disp, temp);
     PC+=4;
 }

   BSET (long i, long n)  /*BSET #imm3, Rn */
 {
   long imm, temp;

   imm= (0x00000007 &(long)i);
   R[n]|=(0x00000001<<imm);
   PC+=2;
  }

Examples:

BSET.B #H'5,@(2,R0) ; Before execution: @(R0 + 2) = H'00
; After execution: @(R0 + 2) = H'20

BSET #H'4,R0 ; Before execution: R0 = H'00000000
; After execution: R0 = H'00000010



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 104 of 484
REJ09B0051-0300

6.3.9 BST Bit STore Bit Manipulation Instruction
Bit Store SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

BST.B #imm3, @(disp12,Rn)

BST #imm3, Rn

T → (<imm> of (disp+Rn))

T → <imm> of Rn

0011nnnn0iii10010010dddddddddddd
10000111nnnn0iii

3

1

―

―

Description

Transfers the contents of the T bit to a specified 1-bit location of memory at the address indicated
by (disp + Rn), or of the LSB 8 bits of a general register Rn.  The bit number is specified by 3-bit
immediate data.  With the BST.B instruction, after data is read from memory as a byte unit,
transfer from the T bit to the specified bit is executed, and the resulting data is then written to
memory as a byte unit.

BST.B #imm3, @(disp12, Rn)

T

7 0

(disp+Rn)

Specified by #imm3

BST #imm3, Rn

Rn
31

Lower 8 bits specified 
by #imm3

07

T



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 105 of 484
REJ09B0051-0300

Operation
BSTM (long d, long i, long n)  /*BST.B #imm3, @(disp12, Rn) */
 {
   long disp, imm, temp;

  disp = (0x00000FFF & (long)d);
  imm= (0x00000007&(long)i);
  temp = (long) Read_Byte (R[n]+disp);
  if(T==0) temp&=(~(0x00000001<<imm));
  else  temp|=(0x00000001<<imm);
  Write_Byte (R[n]+disp, temp);

  PC+=4;

}

BST (long i, long n)  /*BST  #imm3, Rn */
 {
   long disp, imm;

  disp = (0x00000FFF & (long)d);
  imm= (0x00000007&(long)i);
  if (T==0) R[n]&=(~(0x00000001<<imm));
  else  R[n]|=(0x00000001<<imm);

  PC+=2;
 }

Examples:

BST.B #H'4,@(2,R0) ; Before execution: @(R0 + 2) = H'FF, T = 0
; After execution: @(R0 + 2) = H'EF, T = 0

BST #H'4,R0 ; Before execution: R0 = H'00000000, T = 1
; After execution: R0 = H'00000010, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 106 of 484
REJ09B0051-0300

6.3.10 BXOR Bit exclusive OR Bit Manipulation Instruction
Bit Exclusive Logical OR SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

BXOR.B  #imm3, @(disp12,Rn) (<imm> of (disp+Rn)) ^ T
→ T

0011nnnn0iii10010110dddddddddddd 3 Operation
result

Description

Exclusive-ORs a specified bit in memory at the address indicated by (disp + Rn) with the T bit,
and stores the result in the T bit.  The bit number is specified by 3-bit immediate data.  With this
instruction, data is read from memory as a byte unit.

BXOR.B #imm3, @(disp12, Rn)

7 0

^T T

(disp+Rn)

Specified by #imm3



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 107 of 484
REJ09B0051-0300

Operation
BXORM (long d, long i, long n)  /*BXOR.B #imm3, @(disp12, Rn) */
 {
   long disp, imm, temp, assignbit;

     disp = (0x00000FFF & (long)d);
     imm= (0x00000007&(long)i);
     temp= (long) Read_Byte (R[n]+disp);
     assignbit =(0x00000001<<imm)&temp;
     if (assignbit==0)
         {
            if(T==0) T=0;
            else  T=1;
         }
     else
         {
            if(T==0) T=1;
            else  T=0;
         }
     PC+=4;
 }

Examples:

BXOR.B #H'5,@(2,R0) ; Before execution: @(R0 + 2) = H'FF, T = 1
; After execution: @(R0 + 2) = H'FF, T = 0



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 108 of 484
REJ09B0051-0300

6.3.11 CLIPS CLIP as Signed Arithmetic Instruction
Signed Saturation Value Compare Instruction SH-2A/SH2A-FPU (New)

No. Format Abstract Code Cycle T Bit

1 CLIPS.B Rn If Rn > (saturation upper-limit value),
(saturation upper-limit value) → Rn,
1 → CS

0100nnnn10010001 1 ―

2 CLIPS.W Rn If Rn < (saturation lower-limit value),
(saturation lower-limit value) → Rn,
1 → CS

0100nnnn10010101 1 ―

Description

Determines saturation.  Signed data is used with this instruction.  The saturation upper-limit value
is stored in general register Rn if the contents of Rn exceed the saturation upper-limit value, or the
saturation lower-limit value is stored in Rn if the contents of Rn are less than the saturation lower-
limit value, and the CS bit is set to 1.  The saturation upper-limit value and lower-limit value for
each instruction are shown in the table below.

No. Instruction Saturation Lower-Limit Value Saturation Upper-Limit Value

1 CLIPS.B Rn H'FFFFFF80 H'0000007F

2 CLIPS.W Rn H'FFFF8000 H'00007FFF

Notes

The CS bit value does not change if the contents of general register Rn do not exceed the
saturation upper-limit value or are not less than the saturation lower-limit value.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 109 of 484
REJ09B0051-0300

Operation
CLIPSB(long n)  /* CLIPS.B Rn*/
{
 if ( R[n] > 0x0000007F)
  {
    R[n]=0x0000007F;
    CS=1;
  }
 else if (R[n] < 0xFFFFFF80)
  {
    R[n]=0xFFFFFF80;
    CS=1;
   }
 PC+2;
}

CLIPSW(long n)  /* CLIPS.W Rn*/
{
 if ( R[n] > 0x00007FFF)
   {
    R[n]=0x00007FFF;
    CS=1;
    }
 else  if (R[n] < 0xFFFF8000)
    {
      R[n]=0xFFFF8000;
      CS=1;
 PC+2;
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 110 of 484
REJ09B0051-0300

Examples:

CLIPS.B R0 ; Before execution: R0 = H'0000000F, CS = 0
; After execution: R0 = H'0000000F, CS = 0

CLIPS.B R1 ; Before execution: R1 = H'00000080, CS = 0
; After execution: R1 = H'0000007E, CS = 1

CLIPS.W R0 ; Before execution: R0 = H'FFFFFFF0, CS = 0
; After execution: R0 = H'FFFFFFF0, CS = 0

CLIPS.W R1 ; Before execution: R1 = H'FFFF7000, CS = 0
; After execution: R1 = H'FFFF8000, CS = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 111 of 484
REJ09B0051-0300

6.3.12 CLIPU CLIP as Unsigned Arithmetic Instruction
Unsigned Saturation Value Compare Instruction SH-2A/SH2A-FPU (New)

No. Format Abstract Code Cycle T Bit

1 CLIPU.B Rn 0100nnnn10000001 1 ―

2 CLIPU.W Rn

If Rn > (saturation value), (saturation
value) → Rn, 1 → CS 0100nnnn10000101 1 ―

Description

Determines saturation.  Unsigned data is used with this instruction.  If the contents of general
register Rn exceed the saturation value, the saturation value is stored in Rn and the CS bit is set to
1.  The saturation value for each instruction is shown in the table below.

No. Instruction Saturation Value

1 CLIPU.B Rn H'000000FF

2 CLIPU.W Rn H'0000FFFF

Notes

The CS bit value does not change if the contents of general register Rn do not exceed the
saturation upper-limit value.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 112 of 484
REJ09B0051-0300

Operation
CLIPUB(long n)  /* CLIPU.B Rn*/
{
 if ( R[n] > 0x000000FF)
   {
    R[n]=0x000000FF;
    CS=1;
   }
PC+2;
}

CLIPUW(long n)  /* CLIPU.W Rn*/
{
 if ( R[n] > 0x0000FFFF)
   {
    R[n]=0x0000FFFF;
    CS=1;
   }
 PC+2;
}

Examples:

CLIPU.B R0 ; Before execution: R0 = H'0000000F, CS = 0
; After execution: R0 = H'0000000F, CS = 0

CLIPU.B R1 ; Before execution: R1 = H'00000100, CS = 0
; After execution: R1 = H'000000FF, CS = 1

CLIPU.W R0 ; Before execution: R0 = H'00000FFF, CS = 0
; After execution: R0 = H'00000FFF, CS = 0

CLIPU.W R1 ; Before execution: R1 = H'00010000, CS = 0
; After execution: R1 = H'0000FFFF, CS = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 113 of 484
REJ09B0051-0300

6.3.13 DIVS DIVide as Signed Arithmetic Instruction
Signed Division SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

DIVS  R0,Rn Signed, Rn ÷ R0 → Rn 0100nnnn10010100 36 ―

Description

Executes division of the 32-bit contents of a general register Rn (dividend) by the contents of R0
(divisor).  This instruction executes signed division and finds the quotient only.  A remainder
operation is not provided.  To obtain the remainder, find the product of the divisor and the
obtained quotient, and subtract this value from the dividend.  The sign of the remainder will be the
same as that of the dividend.

Notes

An overflow exception will occur if the negative maximum value (H'00000000) is divided by �1.
If division by zero is performed a division by zero exception will occur.

If an interrupt is generated while this instruction is being executed, execution will be halted.  The
return address will be the start address of this instruction, and this instruction will be re-executed.

Operation
DIVS  (long n)  /*  DIVS  R0, Rn */
{
  R[n]=R[n] / R[0];
  PC+=2;
}

Examples:

DIVS R0,R1 ; R1(32bits) / R0 (32bits) = R1(32bits); signed



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 114 of 484
REJ09B0051-0300

6.3.14 DIVU DIVide as Unsigned Arithmetic Instruction
Unsigned Division SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

DIVU  R0, Rn Unsigned, Rn ÷ R0 → Rn 0100nnnn10000100 34 ―

Description

Executes division of the 32-bit contents of a general register Rn (dividend) by the contents of R0
(divisor).  This instruction executes unsigned division and finds the quotient only.  A remainder
operation is not provided.  To obtain the remainder, find the product of the divisor and the
obtained quotient, and subtract this value from the dividend.

Notes

A division by zero exception will occur if division by zero is performed.

If an interrupt is generated while this instruction is being executed, execution will be halted.  The
return address will be the start address of this instruction, and this instruction will be re-executed.

Operation
DIVU  (long n)  /*  DIVU  R0, Rn */
{
 (unsigned long) R[n]= (unsigned long)R[n] /   
 (unsigned long )R[0];
 PC+=2;
}

Examples:

     DIVU R0,R1 ; R1(32bits) / R0(32bits) = R1(32bits); unsigned



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 115 of 484
REJ09B0051-0300

6.3.15 FMOV Floating-point MOVe Floating-Point Instruction
Floating-Point Transfer SH-2A/SH2A-FPU (New)

No. SZ Format Abstract Code Cycle T Bit

1

2

3

4

0

1

0

1

FMOV.S FRm, @(disp12,Rn)

FMOV.D DRm, @(disp12,Rn)

FMOV.S @(disp12,Rm), FRn

FMOV.D @(disp12,Rm), DRn

FRm → (disp×4+Rn)

DRm → (disp×8+Rn)

(disp×4+Rm) → FRn

(disp×8+Rm) → DRn

0011nnnnmmmm00010011dddddddddddd
0011nnnnmmm000010011dddddddddddd
0011nnnnmmmm00010111dddddddddddd
0011nnn0mmmm00010111dddddddddddd

1

2

1

2

―

―

―

―

Description

1. Transfers FRm contents to memory at the address indicated by (disp + Rn).
2. Transfers DRm contents to memory at the address indicated by (disp + Rn).
3. Transfers memory contents at the address indicated by (disp + Rn) to FRn.
4. Transfers memory contents at the address indicated by (disp + Rn) to DRn.

Note

For the Renesas Technology Super H RISC engine assembler, declarations should use scaled
values (×4, ×8) as displacement values.

Operation
void FMOV_INDEX_DISP12_STORE(int  m,n)  /*FMOV.S FRm, @(disp12,Rn) */
{
    long disp;

    disp = (0x00000FFF & (long)d);
    Write_Int ( R[n]+(disp<<2), FR[m]);
    PC +=4;
}

void FMOV_INDEX_DISP12_STORE_DR(int  m,n)   
                                /*FMOV.D DRm, @(disp12,Rn) */
{
    long disp;

    disp = (0x00000FFF & (long)d);



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 116 of 484
REJ09B0051-0300

    Write_Quad (R[n]+(disp<<3), DR[m>>1]);
    PC +=4;
}

void FMOV_INDEX_DISP12_LOAD(int  m,n)  /*FMOV.S @(disp12,Rm), FRn */
{
    long disp;

    disp = (0x00000FFF & (long)d);
    FR[n] = Read_Int (R[m]+(disp<<2));
    PC +=4;
}

void FMOV_INDEX_DISP12_LOAD_DR(int m,n)
                                      /*FMOV.D @(disp12,Rm), DRn */
{
    long disp;

    disp = (0x00000FFF & (long)d);
    DR[n>>1] = Read_Quad (R[m]+(disp<<3));
    PC +=4;
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 117 of 484
REJ09B0051-0300

Examples:

FMOV.S FR0,@(2,R2) ; Before execution: FR0 = H'12345670
; After execution: @(R2 + 8) = H'12345670

FMOV.D DR0,@(2,R2) ; Before execution: FR0 = H'01234567
  FR1 = H'89ABCDEF
; After execution: @(R2 + 16) = H'01234567
 @(R2 + 20) = H'89ABCDEF

FMOV.S @(2,R2),FR0 ; Before execution: @(R2 + 8) = H'12345670
; After execution: FR0 = H'12345670

FMOV.D @(2,R2),DR0 ; Before execution: @(R2 + 16) = H'01234567
 @(R2 + 20) = H'89ABCDEF
; After execution: FR0 = H'01234567
 FR1 = H'89ABCDEF



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 118 of 484
REJ09B0051-0300

6.3.16 JSR/N Jump to SubRoutine with No delay slot Branch Instruction
Branch to Subroutine Procedure with No Delay Slot SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

JSR/N  @Rm

JSR/N  @@(disp8, TBR)

PC - 2→ PR, Rm → PC

PC - 2 → PR, (disp×4+TBR) → PC

0100mmmm01001011
10000011dddddddd

3

5

―

―

Description

Branches to a subroutine procedure at the designated address. The contents of PC are stored in PR
and execution branches to the address indicated by the contents of general register Rm as 32-bit
data or to the address read from memory address (disp × 4 + TBR). The stored contents of PC
indicate the starting address of the second instruction after the present instruction. This instruction
is used with RTS as a subroutine procedure call.

Notes

This is not a delayed branch instruction.
For the Renesas Technology Super H RISC engine assembler, declarations should use scaled
values (×4) as displacement values.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 119 of 484
REJ09B0051-0300

Operation
JSRN (long m)   /* JSR/N  @Rm, */
{
   unsigned  long  temp;

   temp=PC;
   PR=PC-2;
   PC=R[m]+4;
}

JSRNM (long d )   /* JSR/N  @@(disp8, TBR) */
{
   unsigned  long  temp;
   long disp;

   temp=PC;
   PR=PC-2;
   disp=(0x000000FF & d);
   PC=Read_Long(TBR+(disp<<2))+4;
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 120 of 484
REJ09B0051-0300

Examples:
MOV.L  JSRN_TABLE,R0 ; R0 = TRGET address

JSR/N  @R0 ; Branch to TRGET.

ADD    R0,R1 ; ← Procedure return destination

(PR contents)

. . . . . . . .

.align 4
JSRN_TABLE: .data.1 TRGET ; Jump table

TRGET: NOP ; ← Entry to procedure

MOV R2,R3 ;

RTS/N ; Return to above ADD instruction.

TBR+H�08 .data.1 FFFF7F80 ;

. . . . . . . .
JSR/N  @@(2,TBR) ; Branch to address stored in address TBR + H'08

ADD    R0,R1 ; ← Procedure return destination

(PR contents)

. . . . . . . .
FFFF7F80 NOP ; ← Entry to procedure

FFFF7F82 MOV R2,R3 ;

FFFF7F84 RTS/N ; Return to above ADD instruction.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 121 of 484
REJ09B0051-0300

6.3.17 LDBANK LoaD register BANK System Control Instruction
Transfer to Specified Register Bank Entry SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

LDBANK  @Rm, R0 (Specified register bank entry) → R0 0100mmmm11100101 6 ―

Description

The register bank entry indicated by the contents of general register Rm is transferred to general
register R0.  The register bank number and register stored in the bank are specified by general
register Rm.

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 8

Bank 9

Bank 10

Bank 11

Bank 12

Bank 13

Bank 14

000000000

000000001

000000010

000000011

000000100

000000101

000000110

000000111

000001000

000001001

000001010

000001011

000001100

000001101

000001110

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

MACH

          Interrupt vector offset

PR

GBR

MACL

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

BN EN 00

2 1 07 6 16  15

0

31

(Rm) 0...................................

BN ENRegister Bank Entry in Register Bank

BN: Bank number field
EN: Entry number field



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 122 of 484
REJ09B0051-0300

Note

The architecture supports a maximum of 512 banks. However, the number of banks differs
depending on the product.

Operation
LDBANK (long m)  /*LDBANK  @Rm, R0 */
  {
  R[0]=Read_Bank_Long(R[m]);
  PC+=2;
  }

Examples:

LDBANK @R1,R0 ; Before execution: R1 = H'00000108
; After execution: R0 = Contents of R2 stored in R0 = bank 2



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 123 of 484
REJ09B0051-0300

6.3.18 LDC LoaD to Control register System Control Instruction
Load to Control Register SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

LDC  Rm, TBR Rm → TBR 0100mmmm01001010 1 ―

Description

Stores a source operand in control register TBR.

Operation
LDCTBR (long m)  /* LDC Rm, TBR*/
 {
  TBR=R[m];
  PC+=2;
}

Examples:

LDC R0,TBR ; Before execution: R0 = H'12345678, TBR = H'00000000
; After execution: TBR = H'12345678



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 124 of 484
REJ09B0051-0300

6.3.19 MOV MOVe structure data Data Transfer Instruction
Structure Data Transfer SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

MOV.B Rm, @(disp12,Rn) Rm → (disp+Rn) 0011nnnnmmmm00010000dddddddddddd 1 ―

MOV.W Rm, @(disp12,Rn) Rm → (disp×2+Rn) 0011nnnnmmmm00010001dddddddddddd 1 ―

MOV.L Rm, @(disp12,Rn) Rm → (disp×4+Rn) 0011nnnnmmmm00010010dddddddddddd 1 ―

MOV.B @(disp12,Rm), Rn (disp+Rm) → sign
extension → Rn

0011nnnnmmmm00010100dddddddddddd 1 ―

MOV.W @(disp12,Rm), Rn (disp×2+Rm) → sign
extension → Rn

0011nnnnmmmm00010101dddddddddddd 1 ―

MOV.L @(disp12,Rm), Rn (disp×4+Rm) → Rn 0011nnnnmmmm00010110dddddddddddd 1 ―

Description

Transfers a source operand to a destination.  This instruction is ideal for data access in a structure
or the stack.

Note

For the Renesas Technology Super H RISC engine assembler, declarations should use scaled
values (×1, ×2, ×4) as displacement values.

Operation
MOVBS12 (long d, long m, long n)   /* MOV.B Rm, @(disp12,Rn) */
{
   long disp;

   disp = (0x00000FFF & (long)d);
   Write_Byte(R[n]+disp,R[m]);
   PC+=4;
}

MOVWS12 (long d, long m, long n)   /* MOV.W Rm, @(disp12,Rn) */
{
   long disp;

   disp = (0x00000FFF & (long)d);



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 125 of 484
REJ09B0051-0300

   Write_Word(R[n]+(disp<<1),R[m]);
   PC+=4;
}

MOVLS12 (long d, long m, long n)   /* MOV.L Rm, @(disp12,Rn) */
{
   long disp;

   disp = (0x00000FFF & (long)d);
   Write_Long(R[n]+(disp<<2), R[m]);
   PC+=4;
}

MOVBL12 (long d, long m, long n)   /* MOV.B @(disp12,Rm), Rn */
{
   long disp;

   disp = (0x00000FFF & (long)d);
   R[n]=Read_Byte(R[m]+disp);
   if ( ( R[n]&0x80 ) ==0) R[n] &=0x000000FF;
   else R[0] |=0xFFFFFF00;
   PC+=4;
}

MOVWL12 (long d, long m, long n)   /* MOV.W @(disp12,Rm), Rn */
{
   long disp;

   disp = (0x00000FFF & (long)d);
   R[n]=Read_Word(R[m]+(disp<<1));
   if ((R[n]&0x8000) ==0) R[n] &=0x0000FFFF;
   else R[n]|=0xFFFF0000;
    PC+=4;
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 126 of 484
REJ09B0051-0300

MOVLL12 (long d, long m, long n)   /* MOV.L @(disp12,Rm), Rn */
{
   long disp;

   disp = (0x00000FFF & (long)d);
   R[n]=Read_Long(R[m]+(disp<<2));
   PC+=4;
}

Examples:

MOV.B R0,@(1,R1) ; Before execution: R0 = H'FFFF7F80
; After execution: @(R1 + 1) = H'80

MOV.L @(2,R0),R1 ; Before execution: @(R0 + 8) = H'12345670
; After execution: R1 = H'12345670



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 127 of 484
REJ09B0051-0300

6.3.20 MOV MOVe reverse stack Data Transfer Instruction
 Reverse Stack Transfer SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

MOV.B R0, @Rn+ R0 → (Rn), Rn + 1 → Rn 0100nnnn10001011 1 ―

MOV.W R0, @Rn+ R0 → (Rn), Rn + 2→ Rn 0100nnnn10011011 1 ―

MOV.L R0, @Rn+ R0 → (Rn), Rn + 4 → Rn 0100nnnn10101011 1 ―

MOV.B @-Rm, R0 Rm - 1 → Rm
(Rm) → sign extension → R0

0100mmmm11001011 1 ―

MOV.W @-Rm, R0 Rm - 2 → Rm
(Rm) → sign extension → R0

0100mmmm11011011 1 ―

MOV.L @-Rm, R0 Rm - 4 → Rm
(Rm) → R0

0100mmmm11101011 1 ―

Description

Transfers a source operand to a destination.

Operation
MOVRSBP (long n)   /* MOV.B R0, @Rn+*/
{
   Write_Byte(R[n], R[0]);
   R[n]+=1;
   PC+=2;
}

MOVRSWP (long n)   /* MOV.W R0, @Rn+*/
{
   Write_Word(R[n], R[0]);
   R[n]+=2;
   PC+=2;
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 128 of 484
REJ09B0051-0300

MOVRSLP (long n)   /* MOV.L R0, @Rn+*/
{
   Write_Long(R[n], R[0]);
   R[n]+=4;
   PC+=2;
}
MOVRSBM (long m)   /* MOV.B @-Rm, R0*/
{
   R[m]-=1;
   R[0]=(long) Read_Word (R[m]);
   if ((R[0]&0x80)==0)  R[0]&=0x000000FF;
   else R[0] |=0xFFFFFF00;

   PC+=2;
}

MOVRSWM (long m)   /* MOV.W @-Rm, R0*/
{
   R[m]-=2;
   R[0]=(long) Read_Word (R[m]);
   if ((R[0]&0x8000)==0)  R[0]&=0x0000FFFF;
   else R[0] |=0xFFFF0000;

   PC+=2;
}

MOVRSLM(long m)   /* MOV.L @-Rm, R0*/
{
R[m]-=4;
R[0]=Read_Long (R[m]);

    PC+=2;
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 129 of 484
REJ09B0051-0300

Examples:

MOV.B R0, @R1+ ; Before execution: R0 = H'AAAAAAAA, R1 = FFFF7F80
; After execution: R1 = H'FFFF7F81, @(H�FFFF7F80) = H'AA

MOV.L @-R1, R0 ; Before execution: R1 = H'12345678
; After execution: R1 = H'12345674, R0 = @(H'12345674)



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 130 of 484
REJ09B0051-0300

6.3.21 MOVI20 MOVe Immediate 20bits data Data Transfer Instruction
20-Bit Immediate Data Transfer SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

MOVI20  #imm20, Rn imm → sign
extension → Rn

0000nnnniiii0000iiiiiiiiiiiiiiii 1 ―

Description

Stores immediate data that has been sign-extended to longword in general register Rn.

imm

Rn 20 bits

19 031

Sign extension

MOVI20

20 bits

19 0

Operation
MOVI20 (long i, long n)    /* MOVI20 #imm, Rn */
 {
       if (i&0x00080000) ==0) R[n]= (0x000FFFFF & (long) i);
       else R[n]=(0xFFF00000 | (long) i);

    PC+=4;
   }

Examples:

MOVI20 H'7FFFF,R0 ; Before execution: R0 = H'00000000
; After execution: R0 = H'0007FFFF



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 131 of 484
REJ09B0051-0300

6.3.22 MOVI20S MOVe Immediate 20bits data
and 8bits Shift left Data Transfer Instruction

20-Bit Immediate Data Transfer and 8-Bit Left-Shift SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

MOVI20S  #imm20, Rn imm<<8 → sign
extension → Rn

0000nnnniiii0001iiiiiiiiiiiiiiii 1 ―

Description

Shifts immediate data 8 bits to the left and performs sign extension to longword, then stores the
resulting data in general register Rn.  Using an OR or ADD instruction as the next instruction
enables a 28-bit absolute address to be generated. See section Appendix B, Programming
Guidelines, for details.

imm

Rn 20 bits

27 031

Sign extension

8

00000000

MOVI20S

20 bits

19 0

Note

For the Renesas Technology Super H RISC engine assembler, declarations should use immediate
data that has been shifted 8 bits to the left.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 132 of 484
REJ09B0051-0300

Operation
 MOVI20S (long i, long n)    /* MOVI20S #imm, Rn */
{
  if (i&0x00080000) ==0) R[n]= (0x000FFFFF & (long) i);
  else R[n]=(0xFFF00000 | (long) i);
  R[n]<<=8;
  PC+=4;
}

Examples:

MOVI20S H'7FFFF,R0 ; Before execution: R0 = H'00000000
; After execution: R0 = H'07FFFF00



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 133 of 484
REJ09B0051-0300

6.3.23 MOVML.L MOVe Multi-register Lower part Data Transfer Instruction
R0-Rn Register Save/Restore Instruction SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

MOVML.L  Rm, @-R15 R15 - 4 → R15, Rm → (R15)
R15 - 4 → R15, Rm - 1 → (R15)
             :
R15 - 4 → R15, R0 → (R15)

Note: When Rm = R15, read Rm
as PR

0100mmmm11110001 1 to 16 ―

MOVML.L  @R15+, Rn (R15) → R0, R15 + 4 → R15
(R15) → R1, R15 + 4 → R15
             :
(R15) → Rn, R15 + 4 → R15

Note: When Rn = R15, read Rn as
PR

0100nnnn11110101 1 to 16 ―

Description

Transfers a source operand to a destination.  This instruction performs transfer between a number
of general registers (R0 to Rn/Rm) not exceeding the specified register number and memory with
the contents of R15 as its address.

If R15 is specified, PR is transferred instead of R15.  That is, when nnnn(mmmm) = 1111 is
specified, R0 to R14 and PR are the general registers subject to transfer.

Operation
MOVLMML (long m) /*MOVML.L Rm, @-R15*/
{
   long i;

  for (i=m; i≥0; i--)
   {
     if (i==15)
      {
        Write_Long (R[15]-4, PR);
        R[15]-=4;
      }
    else



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 134 of 484
REJ09B0051-0300

     {
        Write_Long (R[15]-4, R[i]);
        R[15]-=4;
      }
   }

 PC+=2;
 }

MOVLPML (long n)  /*MOVML.L @R15+, Rn */
{
  int  i;

  for (i=0; i≤n; i++)
   {
     if (i==15)
        {
          PR=Read_Long (R[15]);
         }
     else
        {
        R[i] = Read_Long (R[15]);
         }
      R[15]+=4;
   }
  PC+=2;
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 135 of 484
REJ09B0051-0300

Examples:

MOVML. L R7,@-R15 ; Before execution: R15 = H'FFFF7F80
 R0 = H'00000000, R1 = H'11111111
 R2 = H'22222222, R3 = H'33333333
 R4 = H'44444444, R5 = H'55555555
 R6 = H'66666666, R7 = H'77777777

; After execution: R15 = H'FFFF7F60
 @(H'FFFF7F7C) = H'77777777
 @(H'FFFF7F78) = H'66666666
 @(H'FFFF7F74) = H'55555555
 @(H'FFFF7F70) = H'44444444
 @(H'FFFF7F6C) = H'33333333
 @(H'FFFF7F68) = H'22222222
 @(H'FFFF7F64) = H'11111111
 @(H'FFFF7F60) = H'00000000

MOVML. L @R15+,R7 ; Before execution: R15 = H'FFFF7F60
 @(H'FFFF7F60) = H'00000000
 @(H'FFFF7F64) = H'11111111
 @(H'FFFF7F68) = H'22222222
 @(H'FFFF7F6C) = H'33333333
 @(H'FFFF7F70) = H'44444444
 @(H'FFFF7F74) = H'55555555
 @(H'FFFF7F78) = H'66666666
 @(H'FFFF7F7C) = H'77777777

; After execution: R15 = H'FFFF7F80
 R0 = H'00000000, R1 = H'11111111
 R2 = H'22222222, R3 = H'33333333
 R4 = H'44444444, R5 = H'55555555
 R6 = H'66666666, R7 = H'77777777



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 136 of 484
REJ09B0051-0300

6.3.24 MOVMU.L MOVe Multi-register Upper part Data Transfer Instruction
Rn-R14, PR Register Save/Restore Instruction SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

MOVMU.L  Rm, @-R15 R15 - 4 → R15, PR → (R15)
R15 - 4 → R15, R14 → (R15)
             :
R15 - 4 → R15, Rm → (R15)

Note: When Rm = R15, read Rm
as PR

0100mmmm11110000 1 to 16 ―

MOVMU.L  @R15+, Rn (R15) → Rn, R15 + 4 → R15
(R15) → Rn + 1, R15 + 4 → R15
            :
(R15) → R14, R15 + 4 → R15
(R15) → PR, R15 + 4 → R15

Note: When Rn = R15, read Rn as
PR

0100nnnn11110100 1 to 16 ―

Description

Transfers a source operand to a destination.  This instruction performs transfer between a number
of general registers (Rn/Rm to R14, PR) not lower than the specified register number and memory
with the contents of R15 as its address.

If R15 is specified, PR is transferred instead of R15.

Operation
 MOVLMMU (long m) /*MOVMU.L Rm, @-R15 */
{
   int i;

   Write_Long (R[15]-4, PR);
   R[15]-=4;

   for (i = 14; i≥m; i--)
    {
    Write_Long (R[15]-4, R[i]);
    R[15]-=4;
    }



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 137 of 484
REJ09B0051-0300

 PC+=2;
 }

MOVLPMU (long n)  /*MOVMU.L @R15+, Rn*/
    {
     int i;

      for (i=n; i≤14; i++)
        {
         R[i] = Read_Long (R[15]);
         R[15]+=4;
        }
      PR=Read_Long (R[15]);
      R[15]+=4;
      PC+=2;
    }



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 138 of 484
REJ09B0051-0300

Examples:

MOVMU. L R8,@-R15 ; Before execution: R15 = H'FFFF7F80
 R8 = H'88888888, R9 = H'99999999
 R10 = H'AAAAAAAA, R11 = H'BBBBBBBB
 R12 = H'CCCCCCCC, R13 = H'DDDDDDDD
 R14 = H'EEEEEEEE, PR = H'FFFFFFF0

; After execution: R15 = H'FFFF7F60
 @(H'FFFF7F7C) = H'FFFFFFF0
 @(H'FFFF7F78) = H'EEEEEEEE
 @(H'FFFF7F74) = H'DDDDDDDD
 @(H'FFFF7F70) = H'CCCCCCCC
 @(H'FFFF7F6C) = H'BBBBBBBB
 @(H'FFFF7F68) = H'AAAAAAAA
 @(H'FFFF7F64) = H'99999999
 @(H'FFFF7F60) = H'88888888

MOVMU. L @R15+,R8 ; Before execution: R15 = H'FFFF7F60
 @(H'FFFF7F60) = H'88888888
 @(H'FFFF7F64) = H'99999999
 @(H'FFFF7F68) = H'AAAAAAAA
 @(H'FFFF7F6C) = H'BBBBBBBB
 @(H'FFFF7F70) = H'CCCCCCCC
 @(H'FFFF7F74) = H'DDDDDDDD
 @(H'FFFF7F78) = H'EEEEEEEE
 @(H'FFFF7F7C) = H'FFFFFFF0

; After execution: R15 = H'FFFF7F80
 R8 = H'88888888, R9 = H'99999999
 R10 = H'AAAAAAAA, R11 = H'BBBBBBBB
 R12 = H'CCCCCCCC, R13 = H'DDDDDDDD
 R14 = H'EEEEEEEE, PR = H'FFFFFFF0



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 139 of 484
REJ09B0051-0300

6.3.25 MOVRT MOVe Reverse Tbit Data Transfer Instruction
T Bit Reverse Rn Transfer SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

MOVRT  Rn ~ T → Rn 0000nnnn00111001 1 ―

Description

Reverses the T bit and then stores the resulting value in general register Rn.  The value of Rn is 0
when T = 1 and 1 when T = 2.

Operation
MOVRT (long n)  /*MOVRT Rn */
 {
  if (T ==1) R[n]=0x00000000;
  else R[n] = 0x00000001;
 PC+=2;
 }

Examples:

     XOR R2,R2 ; R2 = 0
     CMP/PZ R2 ; T = 1
     MOVRT R0 ; R0 = 0
     CLRT ; T = 0
     MOVRT R1 ; R1 = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 140 of 484
REJ09B0051-0300

6.3.26 MOVU MOVe structure data as Unsigned Data Transfer Instruction
Structure Data Unsigned Transfer SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

MOVU.B @(disp12,Rm), Rn (disp+Rm) → zero
extension → Rn

0011nnnnmmmm00011000dddddddddddd 1 ―

MOVU.W @(disp12,Rm), Rn (disp×2+Rm) →
zero extension →
Rn

0011nnnnmmmm00011001dddddddddddd 1 ―

Description

Transfers a source operand to a destination, performing unsigned data transfer.  This instruction is
ideal for data access in a structure or the stack.

Note

For the Renesas Technology Super H RISC engine assembler, declarations should use scaled
values (×1, ×2) as displacement values.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 141 of 484
REJ09B0051-0300

Operation
MOVBUL12 (long d, long m, long n)   /* MOVU.B @(disp12,Rm), Rn */
{
   long disp;

   disp = (0x00000FFF & (long)d);
   R[n]=Read_Byte(R[m]+disp);
   R[n] &=0x000000FF;
   PC+=4;
}

MOVWUL12 (long d, long m, long n)   /* MOVU.W @(disp12,Rm), Rn */
{
   long disp;

   disp = (0x00000FFF & (long)d);
   R[n]=Read_Word(R[m]+(disp<<1));
   R[n] &=0x0000FFFF;
   PC+=4;
}

Examples:

MOVU.B @(2,R0),R1 ; Before execution: @(R0 + 2) = H'FF
; After execution: R1 = H'000000FF

MOVU.W @(2,R0),R1 ; Before execution: @(R0 + 4) = H'FFFF
; After execution: R1 = H'0000FFFF



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 142 of 484
REJ09B0051-0300

6.3.27 MULR MULtiply to Register Arithmetic Instruction
Rn Result Storage Signed Multiplication SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

MULR R0,Rn R0 × Rn → Rn 0100nnnn10000000 2 ―

Description

Performs 32-bit multiplication of the contents of general register R0 by Rn, and stores the lower
32 bits of the result in general register Rn.

Operation
MULR (long n)   /* MULR  R0, Rn */
{
    R[n] = R[0]*R[n];
    PC+=2;
}

Examples:

MULR R0,R1 ; Before execution: R0 = H'FFFFFFFE, R1 = H'00005555
; After execution: R1 = H'FFFF5556



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 143 of 484
REJ09B0051-0300

6.3.28 NOTT NOT Tbit Data Transfer Instruction
T Bit Inversion and Transfer SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

NOTT ~ T → T 0000000001101000 1 Operation
result

Description

Inverts the T bit, then stores the resulting value in the T bit.

Operation
NOTT (long n )  /*NOTT Rn */
 {
  if (T ==1) T=0;
  else T=1;
 PC+=2;
 }

Examples:

  SETT ;T = 1
  NOTT ;T = 0
  NOTT ;T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 144 of 484
REJ09B0051-0300

6.3.29 PREF PREFetch data to cache Data Transfer Instruction
Prefetch to Data Cache SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

PREF  @Rn Prefetch cache block 0000nnnn10000011 1 ―

Description

Reads a 16-byte data block starting at a 16-byte boundary into the operand cache.

Address related errors are not generated for this instruction.  In the event of an error, this
instruction is handled as an NOP (no operation) instruction.

Note

On products with no cache, this instruction is handled as a NOP instruction.

Operation
PREF (long n)  /* PREF @Rn */
 {
 PC+=2;
 }

Examples:

MOV.L SOFT_PF,R1 ; R1 address is SOFT_PF
     PREF    @R1 ; Load SOFT_PF data into internal data cache

.align 16

SOFT_PF: .data.w H'1234
.data.w H'5678
.data.w H'9ABC
.data.w H'DEF0



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 145 of 484
REJ09B0051-0300

6.3.30 RESBANK REStore from registerBANK System Control Instruction
Register Restoration from Register Bank SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

RESBANK Restoration from register bank 0000000001011011 9* ―

Note:  * 19 when a bank overflow has occurred and the register is restored from the stack

Description

Restores the last register saved to a register bank.

Operation

RESBANK( )   /*RESBANK */
             /*m = (Number of register bank to which a save was last
performed)*/
{
 int  m;

if(BO==0)
   {
       PR = Register_Bank[m].PR_BANK;
        GBR = Register_Bank[m].GBR_BANK;
       MACL = Register_Bank[m].MACL_BANK;
       MACH = Register_Bank[m].MACH_BANK;
     for (i=14; i≤14; i++)
                i≥0; i--
      {
        R[i] = Register_Bank[m].R_BANK[i];
       }
   }
 else
   {
      for (i=0; i≤14; i++)
       {
         R[i] = Read_Long(R[15]);
         R[15]+=4;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 146 of 484
REJ09B0051-0300

       }
       PR=Read_Long(R[15]);
       R[15]+=4;
       GBR=Read_Long(R[15]);
       R[15]+=4;
       MACH=Read_Long(R[15]);
       R[15]+=4;
      MACL =Read_Long(R[15]);
      R[15]+=4;
    }

   PC+=2;

}

Examples:

     RESBANK ; Recover register from register bank.
     RTE ; Return to original routine.
     ADD #8,R14 ; Executed before branch.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 147 of 484
REJ09B0051-0300

6.3.31 RTS/N ReTurn from Subroutine with No delay slot Branch Instruction
Return from Subroutine Procedure with No Delay Slot SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

RTS/N PR → PC 0000000001101011 3 ―

Description

Performs a return from a subroutine procedure.  That is, the PC is restored from PR, and
processing is resumed from the address indicated by the PC.  This instruction enables a return to
be made from a subroutine procedure called by a BSR or JSR instruction to the origin of the call.

Note

This is not a delayed branch instruction.

Operation
RTSN ( )   /* RTS/N  */
{
   PC=PR+4;
}

Examples:
MOV.L TABLE,R3 ; R0 = TRGET address

JSR/N  @R3 ; Branch to TRGET.

ADD    R0,R1 ; ← Procedure return destination

(PR contents)

. . . . . . . .
TABLE: .data.1 TRGET ; Jump table

. . . . . . . .
TRGET: NOP ; ← Entry to procedure

MOV R2,R3 ;

RTS/N ; Return to above ADD instruction.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 148 of 484
REJ09B0051-0300

6.3.32 RTV/N ReTurn to Value and from
subroutine with No delay slot Branch Instruction

Return from Subroutine Procedure
with Register Value Transfer and
with No Delay Slot SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

RTV/N Rm Rm → R0, PR → PC 0000mmmm01111011 3 ―

Description

Performs a return from a subroutine procedure after a transfer from specified general register Rm
to R0.  That is, after the Rm value is stored in R0, the PC is restored from PR, and processing is
resumed from the address indicated by the PC.  This instruction enables a return to be made from a
subroutine procedure called by a BSR or JSR instruction to the origin of the call.

Note

This is not a delayed branch instruction.

Operation
RTVN (int m)   /* RTV/N  Rm */
{
   R[0]=R[m];
   PC=PR+4;
 }



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 149 of 484
REJ09B0051-0300

Examples:
MOV.L TABLE,R3 ; R0 = TRGET address

JSR/N  @R3 ; Branch to TRGET.

ADD    R0,R1 ; ← Procedure return destination

(PR contents)

. . . . . . . .
TABLE: .data.1 TRGET ; Jump table

. . . . . . . .
TRGET: NOP ; ←  Entry to procedure

MOV #12,R3 ; R3 = H'00000012
RTV/N R3 ; Return to above ADD instruction.

; R0 = H'00000012



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 150 of 484
REJ09B0051-0300

6.3.33 SHAD SHift Arithmetic Dynamically Shift Instruction
Dynamic Arithmetic Shift

Format Abstract Code Cycle T Bit

SHAD Rm, Rn When Rm ≥ 0, Rn<<Rm → Rn
When Rm < 0, Rn>>|Rm| → [MSB → Rn]

0100nnnnmmmm1100 1 ―

Description

Shifts the contents of general register Rn arithmetically.  General register Rm specifies the shift
direction and number of bits to be shifted.

A left shift is performed when the Rm register value is positive, and a right shift when negative.
In a right shift, the MSB is added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of register Rm.  If the
value is negative (MSB = 1), the Rm register value is expressed as a two's complement.
Therefore, the shift amount in a right shift is the value obtained by adding 1 to the inverse of the
lower 5 bits of register Rm.  The shift amount is 0 to 31 in a left shift, and 1 to 32 in a right shift.

MSB LSBRm  0

0

MSB LSBRm  0

MSB



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 151 of 484
REJ09B0051-0300

Operation
SHAD (int m,n)  /* SHAD Rm,Rn */
  {
     int  sgn = R[m] & 0x80000000;
     if  (sgn == 0)
              R[n] <<= (R[m] & 0x0000001F);
     else  if  ((R[m] & 0x0000001F) == 0)
         {
          if ((R[n] & 0x80000000) == 0)
                R[n] = 0;
          else
              R[n]=0xFFFFFFFF;
         }
     else
              R[n]=(long)R[n] >> ((~R[m] & 0x0000001F)+1);
     PC+=2;
  }

Examples:

SHAD R1, R2 ; Before execution: R1 = H'FFFFFFEC, R2 = H'80180000
; After execution: R1 = H'FFFFFFEC, R2 = H'FFFFF801

SHAD R3, R4 ; Before execution: R3 = H'00000014, R2 = H'FFFFF801
; After execution: R3 = H'00000014, R2 = H'80100000



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 152 of 484
REJ09B0051-0300

6.3.34 SHLD SHift Logical Dynamically Shift Instruction
Dynamic Logical Shift

Format Abstract Code Cycle T Bit

SHLD Rm, Rn When Rm ≥ 0, Rn<<Rm → Rn

When Rm < 0, Rn>>|Rm| → [0 → Rn]

0100nnnnmmmm1101 1 ―

Description

Shifts the contents of general register Rn logically.  General register Rm specifies the shift
direction and number of bits to be shifted.

A left shift is performed when the Rm register value is positive, and a right shift when negative.
In a right shift, 0 is added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of register Rm.  If the
value is negative (MSB = 1), the Rm register value is expressed as a two's complement.
Therefore, the shift amount in a right shift is the value obtained by adding 1 to the inverse of the
lower 5 bits of register Rm.  The shift amount is 0 to 31 in a left shift, and 1 to 32 in a right shift.

MSB LSBRm  0

0

MSB LSBRm  0

0



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 153 of 484
REJ09B0051-0300

Operation
SHLD (int m,n)  /* SHLD Rm,Rn */
 {
   int  sgn = R[m] & 0x80000000;
   if  (sgn == 0)
            R[n] <<= (R[m] & 0x0000001F);
   else  if  ((R[m] & 0x0000001F) == 0)
            R[n] = 0;
   else
            R[n]=(unsigned)R[n] >> ((~R[m] & 0x0000001F)+1);
   PC+=2;
 }

Examples:

SHLD R1, R2 ; Before execution: R1 = H'FFFFFFEC, R2 = H'80180000
; After execution: R1 = H'FFFFFFEC, R2 = H'00000801

SHLD R3, R4 ; Before execution: R3 = H'00000014, R2 = H'FFFFF801
; After execution: R3 = H'00000014, R2 = H'80100000



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 154 of 484
REJ09B0051-0300

6.3.35 STBANK STore register BANK System Control Instruction
Register Save to Specified Bank Entry SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

STBANK R0, @Rn R0 → (specified register bank entry) 0100nnnn11100001 7 ―

Description

R0 is transferred to the register bank entry indicated by the contents of general register Rn.  The
register bank number and register stored in the bank are specified by general register Rn.

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 8

Bank 9

Bank 10

Bank 11

Bank 12

Bank 13

Bank 14

000000000

000000001

000000010

000000011

000000100

000000101

000000110

000000111

000001000

000001001

000001010

000001011

000001100

000001101

000001110

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

MACH

          Interrupt vector offset

PR

GBR

MACL

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

BN EN 00

2 1 07 6 16  15

0

31

(Rn) 0...................................

BN ENRegister Bank Entry in Register Bank

BN: Bank number field

EN: Entry number field



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 155 of 484
REJ09B0051-0300

Note

The architecture supports a maximum of 512 banks. However, the number of banks differs
depending on the product.

Operation
STBANK (long n)  /*STBANK  R0, @Rn */
  {
   Write_Bank_Long (R[n], R[0])
   PC+=2;
  }

Examples:

STBANK R0,@R1 ; Before execution: R1 = H'00000108, R0 = H'FFFFFFFF
; After execution: Contents of R2 stored   R2 = H'FFFFFFFF



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 156 of 484
REJ09B0051-0300

6.3.36 STC STore Control register System Control Instruction
Store from Control Register SH-2A/SH2A-FPU (New)

Format Abstract Code Cycle T Bit

STC TBR, Rn TBR → Rn 0000nnnn01001010 1 ―

Description

Stores data in control register TBR in a destination.

Operation
STCTBR(long n)  /* STC TBR, Rn*/
{
  R[n]=TBR;
  PC+=2;
  }

Examples:

STC TBR,R0 ; Before execution: R0 = H'12345678, TBR = H'00000000
; After execution: R0 = H'00000000



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 157 of 484
REJ09B0051-0300

6.4 SH-2E CPU Instructions

6.4.1 ADD ADD Binary Arithmetic Instruction
Binary Addition

Format Abstract Code Cycle T Bit

ADD Rm,Rn Rm + Rn → Rn 0011nnnnmmmm1100 1 �
ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii 1 �

Description

Adds general register Rn data to Rm data, and stores the result in Rn. 8-bit immediate data can be
added instead of Rm data. Since the 8-bit immediate data is sign-extended to 32 bits, this
instruction can add and subtract immediate data.

Operation
ADD(long m,long n) /* ADD Rm,Rn */
{

R[n]+=R[m];
PC+=2;

}
ADDI(long i,long n) /* ADD #imm,Rn */
{

if ((i&0x80)==0) R[n]+=(0x000000FF & (long)i);
else R[n]+=(0xFFFFFF00 | (long)i);
PC+=2;

}

Examples:
ADD R0,R1 ; Before execution: R0 = H'7FFFFFFF, R1 = H'00000001

; After execution: R1 = H'80000000
ADD #H'01,R2 ; Before execution: R2 = H'00000000

; After execution: R2 = H'00000001
ADD #H'FE,R3 ; Before execution: R3 = H'00000001

; After execution: R3 = H'FFFFFFFF



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 158 of 484
REJ09B0051-0300

6.4.2 ADDC ADD with Carry Arithmetic Instruction
Binary Addition
with Carry

Format Abstract Code Cycle T Bit

ADDC Rm,Rn Rn + Rm + T → Rn, carry → T 0011nnnnmmmm1110 1 Carry

Description

Adds Rm data and the T bit to general register Rn data, and stores the result in Rn. The T bit
changes according to the result. This instruction can add data that has more than 32 bits.

Operation
ADDC (long m,long n) /* ADDC Rm,Rn */
{

unsigned long tmp0,tmp1;

tmp1=R[n]+R[m];
tmp0=R[n];
R[n]=tmp1+T;
if (tmp0>tmp1) T=1;
else T=0;
if (tmp1>R[n]) T=1;
PC+=2;

}

Examples:
CLRT ; R0:R1 (64 bits) + R2:R3 (64 bits) =  R0:R1 (64 bits)

ADDC R3,R1 ; Before execution: T = 0, R1 = H'00000001, R3 = H'FFFFFFFF
; After execution: T = 1, R1 = H'0000000

ADDC R2,R0 ; Before execution: T = 1, R0 = H'00000000, R2 = H'00000000
; After execution: T = 0, R0 = H'00000001



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 159 of 484
REJ09B0051-0300

6.4.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction
Binary Addition
with Overflow Check

Format Abstract Code Cycle T Bit

ADDV Rm,Rn Rn + Rm → Rn, overflow → T 0011nnnnmmmm1111 1 Overflow

Description

Adds general register Rn data to Rm data, and stores the result in Rn. If an overflow occurs, the T
bit is set to 1.

Operation
ADDV(long m,long n) /*ADDV Rm,Rn */
{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;
else dest=1;
if ((long)R[m]>=0) src=0;
else src=1;
src+=dest;
R[n]+=R[m];
if ((long)R[n]>=0) ans=0;
else ans=1;
ans+=dest;
if (src==0 || src==2) {

if (ans==1) T=1;
else T=0;

}
else T=0;
PC+=2;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 160 of 484
REJ09B0051-0300

Examples:
ADDV R0,R1 ; Before execution: R0 = H'00000001, R1 = H'7FFFFFFE, T = 0

; After execution: R1 = H'7FFFFFFF, T = 0
ADDV R0,R1 ; Before execution: R0 = H'00000002, R1 = H'7FFFFFFE, T = 0

; After execution: R1 = H'80000000, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 161 of 484
REJ09B0051-0300

6.4.4 AND AND logical Logical Instruction
Logical AND

Format Abstract Code Cycle T Bit

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 1 �

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 �

AND.B #imm, @(R0,GBR) (R0 + GBR) & imm → (R0 + GBR) 11001101iiiiiiii 3 �

Description

Logically ANDs the contents of general registers Rn and Rm, and stores the result in Rn. The
contents of general register R0 can be ANDed with zero-extended 8-bit immediate data. 8-bit
memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate data.

Note

After AND #imm, R0 is executed and the upper 24 bits of R0 are always cleared to 0.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 162 of 484
REJ09B0051-0300

Operation
AND(long m,long n) /* AND Rm,Rn */
{

R[n]&=R[m]
PC+=2;

}
ANDI(long i) /* AND #imm,R0 */
{

R[0]&=(0x000000FF & (long)i);
PC+=2;

}
ANDM(long i) /* AND.B #imm,@(R0,GBR) */
{

long temp;
temp=(long)Read_Byte(GBR+R[0]);
temp&=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;

}

Examples:
AND R0,R1 ; Before execution: R0 = H'AAAAAAAA, R1 = H'55555555

; After execution: R1 = H'00000000
AND #H'0F,R0 ; Before execution: R0 = H'FFFFFFFF

; After execution: R0 = H'0000000F
AND.B #H'80,@(R0,GBR) ; Before execution: @(R0,GBR) = H'A5

; After execution: @(R0,GBR) = H'80



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 163 of 484
REJ09B0051-0300

6.4.5 BF Branch if False Branch Instruction
Conditional Branch

Format Abstract Code Cycle T Bit

BF label When T = 0, disp × 2 + PC → PC;
When T = 1, nop

10001011dddddddd 3/1 �

Description

Reads the T bit, and conditionally branches. If T = 0, it branches to the branch destination address.
If T = 1, BF executes the next instruction. The branch destination is an address specified by PC +
displacement. However, in this case it is used for address calculation. The PC is the address 4
bytes after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently,
the relative interval from the branch destination is �256 to +254 bytes. If the displacement is too
short to reach the branch destination, use BF with the BRA instruction or the like.

Note

When branching, three cycles; when not branching, one cycle.

Operation
BF(long d) /* BF disp */
{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFF00 | (long)d);
if (T==0) PC=PC+(disp<<1);
else PC+=2;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 164 of 484
REJ09B0051-0300

Example:
CLRT ; T is always cleared to 0

BT TRGET_T ; Does not branch, because T = 0

BF TRGET_F ; Branches to TRGET_F, because T = 0

NOP ;

NOP ; ← The PC location is used to calculate the branch destination
.......... address of the BF instruction

TRGET_F: ; ← Branch destination of the BF instruction



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 165 of 484
REJ09B0051-0300

6.4.6 BF/S Branch if False with delay Slot Branch Instruction
Conditional Branch with Delay Delayed Branch Instruction

Format Abstract Code Cycle T Bit

BF/S label When T = 0, disp × 2+ PC → PC;
When T = 1, nop

10001111dddddddd 2/1 �

Description

Reads the T bit and conditionally branches. If T = 0, it branches after executing the next
instruction. If T = 1, BF/S executes the next instruction. The branch destination is an address
specified by PC + displacement. However, in this case it is used for address calculation. The PC is
the address 4 bytes after this instruction. The 8-bit displacement is sign-extended and doubled.
Consequently, the relative interval from the branch destination is �256 to +254 bytes. If the
displacement is too short to reach the branch destination, use BF with the BRA instruction or the
like.

Note

Since this is a delay branch instruction, the instruction immediately following is executed before
the branch. No interrupts and address errors are accepted between this instruction and the next
instruction. When the instruction immediately following is a branch instruction, it is recognized as
an illegal slot instruction. When branching, this is a two-cycle instruction; when not branching,
one cycle.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 166 of 484
REJ09B0051-0300

Operation
BFS(long d) /* BFS disp */
{

long disp;
unsigned long temp;

temp=PC;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFF00 | (long)d);
if (T==0) {

PC=PC+(disp<<1);
Delay_Slot(temp+2);

}
else PC+=2;

}

Example:
CLRT ; T is always 0

BT/S TRGET_T ; Does not branch, because T = 0

NOP ;

BF/S TRGET_F ; Branches to TRGET_F, because T = 0

ADD R0,R1 ; Executed before branch.

NOP ; ← The PC location is used to calculate the branch destination
.......... address of the BF/S instruction

TRGET_F: ; ← Branch destination of the BF/S instruction

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 167 of 484
REJ09B0051-0300

6.4.7 BRA BRAnch Branch Instruction
Unconditional Branch Delayed Branch Instruction

Format Abstract Code Cycle T Bit
BRA label disp × 2 + PC → PC 1010dddddddddddd 2 �

Description

Branches unconditionally after executing the instruction following this BRA instruction. The
branch destination is an address specified by PC + displacement. However, in this case it is used
for address calculation. The PC is the address 4 bytes after this instruction. The 12-bit
displacement is sign-extended and doubled. Consequently, the relative interval from the branch
destination is �4096 to +4094 bytes. If the displacement is too short to reach the branch
destination, this instruction must be changed to the JMP instruction. Here, a MOV instruction
must be used to transfer the destination address to a register.

Note

Since this is a delayed branch instruction, the instruction after BRA is executed before branching.
No interrupts and address errors are accepted between this instruction and the next instruction. If
the next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation
BRA(long d) /* BRA disp */
{

unsigned long temp;
long disp;

if ((d&0x800)==0) disp=(0x00000FFF & (long) d);
else disp=(0xFFFFF000 | (long) d);
temp=PC;
PC=PC+(disp<<1);
Delay_Slot(temp+2);

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 168 of 484
REJ09B0051-0300

Example:
BRA TRGET ; Branches to TRGET

ADD R0,R1 ; Executes ADD before branching

NOP ; ← The PC location is used to calculate the branch destination
.......... address of the BRA instruction

TRGET: ; ← Branch destination of the BRA instruction

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 169 of 484
REJ09B0051-0300

6.4.8 BRAF BRAnch Far Branch Instruction
Unconditional Branch Delayed Branch Instruction

Format Abstract Code Cycle T Bit

BRAF Rm Rm + PC → PC 0000mmmm00100011 2 �

Description

Branches unconditionally. The branch destination is PC + the 32-bit contents of the general
register Rm. However, in this case it is used for address calculation. The PC is the address 4 bytes
after this instruction.

Note

Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation
BRAF(long m) /* BRAF Rm */
{

unsigned long temp;

temp=PC;
PC=PC+R[m];
Delay_Slot(temp+2);

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 170 of 484
REJ09B0051-0300

Example:
MOV.L #(TARGET-BSRF_PC),R0 ; Sets displacement.

BRA TRGET ; Branches to TARGET

ADD R0,R1 ; Executes ADD before branching

   BRAF_PC: ; ← The PC location is used to calculate the branch
destination address of the BRAF instruction

NOP
....................

   TARGET: ; ← Branch destination of the BRAF instruction

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 171 of 484
REJ09B0051-0300

6.4.9 BSR Branch to SubRoutine Branch Instruction
Branch to Subroutine Procedure Delayed Branch Instruction

Format Abstract Code Cycle T Bit

BSR label PC → PR, disp × 2+ PC → PC 1011dddddddddddd 2 �

Description

Branches to the subroutine procedure at a specified address. The PC value is stored in the PR, and
the program branches to an address specified by PC + displacement. However, in this case it is
used for address calculation. The PC is the address 4 bytes after this instruction. The 12-bit
displacement is sign-extended and doubled. Consequently, the relative interval from the branch
destination is �4096 to +4094 bytes. If the displacement is too short to reach the branch
destination, the JSR instruction must be used instead. With JSR, the destination address must be
transferred to a register by using the MOV instruction. This BSR instruction and the RTS
instruction are used together for a subroutine procedure call.

Note

Since this is a delayed branch instruction, the instruction after BSR is executed before branching.
No interrupts and address errors are accepted between this instruction and the next instruction. If
the next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation
BSR(long d) /* BSR disp */
{

long disp;

if ((d&0x800)==0) disp=(0x00000FFF & (long) d);
else disp=(0xFFFFF000 | (long) d);
PR=PC+Is_32bit_Inst(PR+2);
PC=PC+(disp<<1);
Delay_Slot(PR+2);

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 172 of 484
REJ09B0051-0300

Example:
BSR TRGET ; Branches to TRGET

MOV R3,R4 ; Executes the MOV instruction before branching

ADD R0,R1 ; ← The PC location is used to calculate the branch destination address of
the BSR instruction (return address for when the subroutine procedure is
completed (PR data))

.......

.......
TRGET: ; ← Procedure entrance

MOV R2,R3 ;

RTS ; Returns to the above ADD instruction

MOV #1,R0 ; Executes MOV before branching

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 173 of 484
REJ09B0051-0300

6.4.10 BSRF Branch to SubRoutine Far Branch Instruction
Branch to Subroutine Procedure Delayed Branch Instruction

Format Abstract Code Cycle T Bit

BSRF Rm PC → PR, Rm + PC → PC 0000mmmm00000011 2 �

Description

Branches to the subroutine procedure at a specified address after executing the instruction
following this BSRF instruction. The PC value is stored in the PR. The branch destination is PC +
the 32-bit contents of the general register Rm. However, in this case it is used for address
calculation. The PC is the address 4 bytes after this instruction. Used as a subroutine procedure
call in combination with RTS.

Note

Since this is a delayed branch instruction, the instruction after BSR is executed before branching.
No interrupts and address errors are accepted between this instruction and the next instruction. If
the next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation
BSRF(long m) /* BSRF Rm */
{

PR=PC
PC=PC+R[m];
Delay_Slot(PR+2);

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 174 of 484
REJ09B0051-0300

Example:
MOV.L #(TARGET-BSRF_PC),R0 ; Sets displacement.
BRSF R0 ; Branches to TARGET
MOV R3,R4 ; Executes the MOV instruction before branching

BSRF_PC: ; ← The PC location is used to calculate the branch
destination with BSRF.

ADD R0,R1
.....
.....

TARGET: ; ←Procedure entrance
MOV R2,R3 ;
RTS ; Returns to the above ADD instruction
MOV #1,R0 ; Executes MOV before branching

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 175 of 484
REJ09B0051-0300

6.4.11 BT Branch if True Branch Instruction
Conditional Branch

Format Abstract Code Cycle T Bit

BT label When T = 1, disp × 2 + PC → PC;
When T = 0, nop

10001001dddddddd 3/1 �

Description

Reads the T bit, and conditionally branches. If T = 1, BT branches. If T = 0, BT executes the next
instruction. The branch destination is an address specified by PC + displacement. However, in this
case it is used for address calculation. The PC is the address 4 bytes after this instruction. The 8-
bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch
destination is �256 to +254 bytes. If the displacement is too short to reach the branch destination,
use BT with the BRA instruction or the like.

Note

When branching, requires three cycles; when not branching, one cycle.

Operation
BT(long d) /* BT disp */
{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFF00 | (long)d);
if (T==1) PC=PC+(disp<<1);
else PC+=2;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 176 of 484
REJ09B0051-0300

Example:
SETT ; T is always 1

BF TRGET_F ; Does not branch, because T = 1

BT TRGET_T ; Branches to TRGET_T, because T = 1

NOP ;

NOP ; ← The PC location is used to calculate the branch destination
.......... address of the BT instruction

TRGET_T: ; ← Branch destination of the BT instruction



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 177 of 484
REJ09B0051-0300

6.4.12 BT/S Branch if True with delay Slot Branch Instruction
Conditional Branch with Delay Delayed Branch Instruction

Format Abstract Code Cycle T Bit

BT/S label When T = 1, disp × 2 + PC → PC;
When T = 0, nop

10001101dddddddd 2/1 �

Description

Reads the T bit and conditionally branches. If T = 1, BT/S branches after the following instruction
executes. If T = 0, BT/S executes the next instruction. The branch destination is an address
specified by PC + displacement. However, in this case it is used for address calculation. The PC is
the address 4 bytes after this instruction. The 8-bit displacement is sign-extended and doubled.
Consequently, the relative interval from the branch destination is �256 to +254 bytes. If the
displacement is too short to reach the branch destination, use BT/S with the BRA instruction or the
like.

Note

Since this is a delay branch instruction, the instruction immediately following is executed before
the branch. No interrupts and address errors are accepted between this instruction and the next
instruction. When the immediately following instruction is a branch instruction, it is recognized as
an illegal slot instruction. When branching, requires two cycles; when not branching, one cycle.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 178 of 484
REJ09B0051-0300

Operation
BTS(long d) /* BTS disp */
{

long disp;
unsigned long temp;

temp=PC;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);
else disp=(0xFFFFFF00 | (long)d);
if (T==1) {

PC=PC+(disp<<1);
Delay_Slot(temp+2);

}
else PC+=2;

}

Example:
SETT ; T is always 1

BF/S TARGET_F ; Does not branch, because T = 1

NOP ;

BT/S TARGET_T ; Branches to TARGET, because T = 1

ADD R0,R1 ; Executes before branching.

NOP ; ← The PC location is used to calculate the branch destination
.......... address of the BT/S instruction

TARGET_T: ; ← Branch destination of the BT/S instruction

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 179 of 484
REJ09B0051-0300

6.4.13 CLRMAC CleaR MAC register System Control Instruction
MAC Register Clear

Format Abstract Code Cycle T Bit

CLRMAC 0 → MACH, MACL 0000000000101000 1 �

Description

Clear the MACH and MACL Register.

Operation
CLRMAC() /* CLRMAC */
{

MACH=0;
MACL=0;
PC+=2;

}

Example:
CLRMAC ; Clears and initializes the MAC register

MAC.W @R0+,@R1+ ; Multiply and accumulate operation

MAC.W @R0+,@R1+ ;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 180 of 484
REJ09B0051-0300

6.4.14 CLRT CleaR T bit System Control Instruction
T Bit Clear

Format Abstract Code Cycle T Bit

CLRT 0 → T 0000000000001000 1 0

Description

Clears the T bit.

Operation
CLRT() /* CLRT */
{

T=0;
PC+=2;

}

Example:
CLRT ; Before execution: T = 1

; After execution: T = 0



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 181 of 484
REJ09B0051-0300

6.4.15 CMP/cond CoMPare conditionally Arithmetic Instruction
Compare

Format Abstract Code Cycle T Bit

CMP/EQ Rm,Rn When Rn = Rm, 1 → T 0011nnnnmmmm0000 1 Comparison result

CMP/GE Rm,Rn When signed and Rn ≥ Rm,
1 → T

0011nnnnmmmm0011 1 Comparison result

CMP/GT Rm,Rn When signed and Rn > Rm,
1 → T

0011nnnnmmmm0111 1 Comparison result

CMP/HI Rm,Rn When unsigned and Rn > Rm,
1 → T

0011nnnnmmmm0110 1 Comparison result

CMP/HS Rm,Rn When unsigned and Rn ≥ Rm,
1 → T

0011nnnnmmmm0010 1 Comparison result

CMP/PL Rn When Rn > 0, 1 → T 0100nnnn00010101 1 Comparison result

CMP/PZ Rn When Rn ≥ 0, 1 → T 0100nnnn00010001 1 Comparison result

CMP/STR Rm,Rn When a byte in Rn equals
a byte in Rm, 1 → T

0010nnnnmmmm1100 1 Comparison result

CMP/EQ #imm,R0 When R0 = imm, 1 → T 10001000iiiiiiii 1 Comparison result

Description

Compares general register Rn data with Rm data, and sets the T bit to 1 if a specified condition
(cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied. The Rn data does not
change. The following eight conditions can be specified. Conditions PZ and PL are the results of
comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be compared with
R0 by using condition EQ. Here, R0 data does not change. Table 6.1 shows the mnemonics for the
conditions.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 182 of 484
REJ09B0051-0300

Table 6.1 CMP Mnemonics

Mnemonics Condition

CMP/EQ Rm,Rn If Rn = Rm, T = 1
CMP/GE Rm,Rn If Rn ≥ Rm with signed data, T = 1
CMP/GT Rm,Rn If Rn > Rm with signed data, T = 1
CMP/HI Rm,Rn If Rn > Rm with unsigned data, T = 1
CMP/HS Rm,Rn If Rn ≥ Rm with unsigned data, T = 1
CMP/PL Rn If Rn > 0, T = 1
CMP/PZ Rn If Rn ≥ 0, T = 1
CMP/STR Rm,Rn If a byte in Rn equals a byte in Rm, T = 1
CMP/EQ #imm,R0 If R0 = imm, T = 1

Operation
CMPEQ(long m,long n) /* CMP_EQ Rm,Rn */
{

if (R[n]==R[m]) T=1;
else T=0;
PC+=2;

}
CMPGE(long m,long n) /* CMP_GE Rm,Rn */
{

if ((long)R[n]>=(long)R[m]) T=1;
else T=0;
PC+=2;

}
CMPGT(long m,long n) /* CMP_GT Rm,Rn */
{

if ((long)R[n]>(long)R[m]) T=1;
else T=0;
PC+=2;

}
CMPHI(long m,long n) /* CMP_HI Rm,Rn */
{

if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 183 of 484
REJ09B0051-0300

else T=0;
PC+=2;

}
CMPHS(long m,long n) /* CMP_HS Rm,Rn */
{

if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;
else T=0;
PC+=2;

}
CMPPL(long n) /* CMP_PL Rn */
{

if ((long)R[n]>0) T=1;
else T=0;
PC+=2;

}
CMPPZ(long n) /* CMP_PZ Rn */
{

if ((long)R[n]>=0) T=1;
else T=0;
PC+=2;

}
CMPSTR(long m,long n) /* CMP_STR Rm,Rn */
{

unsigned long temp;
long HH,HL,LH,LL;

temp=R[n]^R[m];
HH=(temp>>24)&0x000000FF;
HL=(temp>>16)&0x000000FF;
LH=(temp>>8)&0x000000FF;
LL=temp&0x000000FF;
HH=HH&&HL&&LH&&LL;
if (HH==0) T=1;
else T=0;
PC+=2;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 184 of 484
REJ09B0051-0300

}
CMPIM(long i) /* CMP_EQ #imm,R0 */
{

long imm;

if ((i&0x80)==0) imm=(0x000000FF & (long i));
else imm=(0xFFFFFF00 | (long i));
if (R[0]==imm) T=1;
else T=0;
PC+=2;

}

Example:
CMP/GE R0,R1 ; R0 = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ; Does not branch because T = 0

CMP/HS R0,R1 ; R0 = H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ; Branches because T = 1

CMP/STR R2,R3 ; R2 = �ABCD�, R3 = �XYCZ�
BT TRGET_T ; Branches because T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 185 of 484
REJ09B0051-0300

6.4.16 DIV0S DIVide (step 0) as Signed Arithmetic Instruction
Initialization for
Signed Division

Format Abstract Code Cycle T Bit

DIV0S Rm,Rn MSB of Rn → Q, MSB of Rm → M,
M^Q → T

0010nnnnmmmm0111 1 Calculation result

Description

DIV0S is an initialization instruction for signed division. It finds the quotient by repeatedly
dividing in combination with the DIV1 or another instruction that divides for each bit after this
instruction. See the description given with DIV1 for more information.

Operation
DIV0S(long m,long n) /* DIV0S Rm,Rn */
{

if ((R[n]&0x80000000)==0) Q=0;
else Q=1;
if ((R[m]&0x80000000)==0) M=0;
else M=1;
T=!(M==Q);
PC+=2;

}

Example: See DIV1.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 186 of 484
REJ09B0051-0300

6.4.17 DIV0U DIVide (step 0) as Unsigned Arithmetic Instruction
Initialization for Unsigned Division

Format Abstract Code Cycle T Bit

DIV0U 0 → M/Q/T 0000000000011001 1 0

Description

DIV0U is an initialization instruction for unsigned division. It finds the quotient by repeatedly
dividing in combination with the DIV1 or another instruction that divides for each bit after this
instruction. See the description given with DIV1 for more information.

Operation
DIV0U() /* DIV0U */
{

M=Q=T=0;
PC+=2;

}

Example: See DIV1.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 187 of 484
REJ09B0051-0300

6.4.18 DIV1 DIVide 1 step Arithmetic Instruction
Division

Format Abstract Code Cycle T Bit

DIV1 Rm,Rn 1 step division (Rn ÷ Rm) 0011nnnnmmmm0100 1 Calculation result

Description

Uses single-step division to divide one bit of the 32-bit data in general register Rn (dividend) by
Rm data (divisor). It finds a quotient through repetition either independently or used in
combination with other instructions. During this repetition, do not rewrite the specified register or
the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient
bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a
division, first find the quotient using a DIV1 instruction, then find the remainder as follows:

(dividend) � (divisor) × (quotient) = (remainder)

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIV0S or DIV0U. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 188 of 484
REJ09B0051-0300

Operation
DIV1(long m,long n) /* DIV1 Rm,Rn */
{

unsigned long tmp0;
unsigned char old_q,tmp1;

old_q=Q;
Q=(unsigned char)((0x80000000 & R[n])!=0);
R[n]<<=1;
R[n]|=(unsigned long)T;

switch(old_q){
case 0:switch(M){

case 0:tmp0=R[n];
R[n]-=R[m];
tmp1=(R[n]>tmp0);
switch(Q){
case 0:Q=tmp1;

break;
case 1:Q=(unsigned char)(tmp1==0);

break;
}
break;

case 1:tmp0=R[n];
R[n]+=R[m];
tmp1=(R[n]<tmp0);
switch(Q){
case 0:Q=(unsigned char)(tmp1==0);

break;
case 1:Q=tmp1;

break;
}
break;

}
break;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 189 of 484
REJ09B0051-0300

case 1:switch(M){
case 0:tmp0=R[n];

R[n]+=R[m];
tmp1=(R[n]<tmp0);
switch(Q){
case 0:Q=tmp1;

break;
case 1:Q=(unsigned char)(tmp1==0);

break;
}
break;

case 1:tmp0=R[n];
R[n]-=R[m];
tmp1=(R[n]>tmp0);
switch(Q){
case 0:Q=(unsigned char)(tmp1==0);

break;
case 1:Q=tmp1;

break;
}
break;

}
break;

}
T=(Q==M);
PC+=2;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 190 of 484
REJ09B0051-0300

Example 1:
; R1 (32 bits) / R0 (16 bits) = R1 (16 bits):Unsigned

SHLL16 R0 ; Upper 16 bits = divisor, lower 16 bits = 0

TST R0,R0 ; Zero division check

BT ZERO_DIV ;

CMP/HS R0,R1 ; Overflow check

BT OVER_DIV ;

DIV0U ; Flag initialization

.arepeat 16 ;

DIV1 R0,R1 ; Repeat 16 times

.aendr ;

ROTCL R1 ;

EXTU.W R1,R1 ; R1 = Quotient

Example 2:
; R1:R2 (64 bits)/R0 (32 bits) = R2 (32 bits):Unsigned

TST R0,R0 ; Zero division check

BT ZERO_DIV ;
CMP/HS ;R0,R1 ; Overflow check

BT OVER_DIV ;
DIV0U ; Flag initialization

.arepeat 32 ;

ROTCL R2 ; Repeat 32 times

DIV1 R0,R1 ;

.aendr ;

ROTCL R2 ; R2 = Quotient



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 191 of 484
REJ09B0051-0300

Example 3:
; R1 (16 bits)/R0 (16 bits) = R1 (16 bits):Signed

SHLL16 R0 ; Upper 16 bits = divisor, lower 16 bits = 0

EXTS.W R1,R1 ; Sign-extends the dividend to 32 bits

XOR R2,R2 ; R2 = 0

MOV R1,R3 ;

ROTCL R3 ;

SUBC R2,R1 ; Decrements if the dividend is negative

DIV0S R0,R1 ; Flag initialization

.arepeat 16 ;

DIV1 R0,R1 ; Repeat 16 times

.aendr

EXTS.W R1,R1 ;

ROTCL R1 ; R1 = quotient (one�s complement)

ADDC R2,R1 ; Increments and takes the two�s complement if the MSB of the quotient is 1

EXTS.W R1,R1 ; R1 = quotient (two�s complement)

Example 4:
; R2 (32 bits) / R0 (32 bits) = R2 (32 bits):Signed

MOV R2,R3 ;

ROTCL R3 ;

SUBC R1,R1 ; Sign-extends the dividend to 64 bits (R1:R2)

XOR R3,R3 ; R3 = 0

SUBC R3,R2 ; Decrements and takes the one�s complement if the dividend is negative

DIV0S R0,R1 ; Flag initialization

.arepeat 32 ;

ROTCL R2 ; Repeat 32 times

DIV1 R0,R1 ;

.aendr ;

ROTCL R2 ; R2 = Quotient (one�s complement)

ADDC R3,R2 ; Increments and takes the two�s complement if the MSB of the quotient is 1.
R2 = Quotient (two�s complement)



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 192 of 484
REJ09B0051-0300

6.4.19 DMULS.L Double-length
MULtiply as Signed Arithmetic Instruction

Signed Double-Length
Multiplication

Format Abstract Code Cycle T Bit

DMULS.L Rm, Rn With sign, Rn × Rm → MACH, MACL 0011nnnnmmmm1101 4 �

Description

Performs 32-bit multiplication of the contents of general registers Rn and Rm, and stores the 64-
bit results in the MACL and MACH register. The operation is a signed arithmetic operation.

Operation
DMULS(long m,long n) /* DMULS.L Rm,Rn */
{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;
unsigned long temp0,temp1,temp2,temp3;
long tempm,tempn,fnLmL;

tempn=(long)R[n];
tempm=(long)R[m];
if (tempn<0) tempn=0-tempn;
if (tempm<0) tempm=0-tempm;
if ((long)(R[n]^R[m])<0) fnLmL=-1;
else fnLmL=0;

temp1=(unsigned long)tempn;
temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 193 of 484
REJ09B0051-0300

temp0=RmL*RnL;
temp1=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

Res2=0
Res1=temp1+temp2;
if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;
Res0=temp0+temp1;
if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if (fnLmL<0) {
Res2=~Res2;
if (Res0==0)

Res2++;
else

Res0=(~Res0)+1;
}
MACH=Res2;
MACL=Res0;
PC+=2;

}

Example:
DMULS.L R0,R1 ; Before execution: R0 = H'FFFFFFFE, R1 = H'00005555

; After execution: MACH = H'FFFFFFFF, MACL = H'FFFF5556
STS MACH,R0 ; Operation result (top)

STS MACL,R0 ; Operation result (bottom)



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 194 of 484
REJ09B0051-0300

6.4.20 DMULU.L Double-length MULtiply
as Unsigned Arithmetic Instruction

Unsigned Double-Length
Multiplication

Format Abstract Code Cycle T Bit

DMULU.L Rm, Rn Without sign, Rn × Rm → MACH,
MACL

0011nnnnmmmm0101 2 �

Description

Performs 32-bit multiplication of the contents of general registers Rn and Rm, and stores the 64-
bit results in the MACL and MACH register. The operation is an unsigned arithmetic operation.

Operation
DMULU(long m,long n) /* DMULU.L Rm,Rn */
{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;
unsigned long temp0,temp1,temp2,temp3;

RnL=R[n]&0x0000FFFF;
RnH=(R[n]>>16)&0x0000FFFF;

RmL=R[m]&0x0000FFFF;
RmH=(R[m]>>16)&0x0000FFFF;

temp0=RmL*RnL;
temp1=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

Res2=0
Res1=temp1+temp2;
if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 195 of 484
REJ09B0051-0300

Res0=temp0+temp1;
if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

MACH=Res2;
MACL=Res0;
PC+=2;

}

Example:
DMULU.L R0,R1 ; Before execution: R0 = H'FFFFFFFE, R1 = H'00005555

; After execution: MACH = H'FFFFFFFF, MACL = H'FFFF5556
STS MACH,R0 ; Operation result (top)

STS MACL,R0 ; Operation result (bottom)



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 196 of 484
REJ09B0051-0300

6.4.21 DT Decrement and Test Arithmetic Instruction
Decrement and Test

Format Abstract Code Cycle T Bit

DT Rn Rn � 1 → Rn; When Rn is 0, 1 → T,
when Rn is nonzero, 0 → T

0100nnnn00010000 1 Comparison
result

Description

The contents of general register Rn are decremented by 1 and the result compared to 0 (zero).
When the result is 0, the T bit is set to 1. When the result is not zero, the T bit is set to 0.

Operation
DT(long n) /* DT Rn */
{

R[n]--;
if (R[n]==0) T=1;
else T=0;
PC+=2;

}

Example:
MOV #4,R5 ; Sets the number of loops.

LOOP:
ADD R0,R1 ;

DT R5 ; Decrements the R5 value and checks whether it has become 0.

BF LOOP ; Branches to LOOP is T=0. (In this example, loops 4 times.)



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 197 of 484
REJ09B0051-0300

6.4.22 EXTS EXTend as Signed Arithmetic Instruction
Sign Extension

Format Abstract Code Cycle T Bit

EXTS.B Rm, Rn Sign-extend Rm from byte → Rn 0110nnnnmmmm1110 1 �
EXTS.W Rm, Rn Sign-extend Rm from word → Rn 0110nnnnmmmm1111 1 �

Description

Sign-extends general register Rm data, and stores the result in Rn. If byte length is specified, the
bit 7 value of Rm is copied into bits 8 to 31 of Rn. If word length is specified, the bit 15 value of
Rm is copied into bits 16 to 31 of Rn.

Operation
EXTSB(long m,long n) /* EXTS.B Rm,Rn */
{

R[n]=R[m];
if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFF00;
PC+=2;

}
EXTSW(long m,long n) /* EXTS.W Rm,Rn */
{

R[n]=R[m];
if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;
PC+=2;

}

Examples:
EXTS.B R0,R1 ; Before execution: R0 = H'00000080

; After execution: R1 = H'FFFFFF80
EXTS.W R0,R1 ; Before execution: R0 = H'00008000

; After execution: R1 = H'FFFF8000



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 198 of 484
REJ09B0051-0300

6.4.23 EXTU EXTend as Unsigned Arithmetic Instruction
Zero Extension

Format Abstract Code Cycle T Bit

EXTU.B Rm, Rn Zero-extend Rm from byte → Rn 0110nnnnmmmm1100 1 �
EXTU.W Rm, Rn Zero-extend Rm from word → Rn 0110nnnnmmmm1101 1 �

Description

Zero-extends general register Rm data, and stores the result in Rn. If byte length is specified, 0s
are written in bits 8 to 31 of Rn. If word length is specified, 0s are written in bits 16 to 31 of Rn.

Operation
EXTUB(long m,long n) /* EXTU.B Rm,Rn */
{

R[n]=R[m];
R[n]&=0x000000FF;
PC+=2;

}
EXTUW(long m,long n) /* EXTU.W Rm,Rn */
{

R[n]=R[m];
R[n]&=0x0000FFFF;
PC+=2;

}

Examples:
EXTU.B R0,R1 ; Before execution: R0 = H'FFFFFF80

; After execution: R1 = H'00000080
EXTU.W R0,R1 ; Before execution: R0 = H'FFFF8000

; After execution: R1 = H'00008000



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 199 of 484
REJ09B0051-0300

6.4.24 JMP JuMP Branch Instruction
Unconditional Branch Delayed Branch Instruction

Format Abstract Code Cycle T Bit

JMP @Rm Rm → PC 0100mmmm00101011 2 �

Description

Branches unconditionally to the address specified by register indirect addressing. The branch
destination is an address specified by the 32-bit data in general register Rm.

Note

Since this is a delayed branch instruction, the instruction after JMP is executed before branching.
No interrupts or address errors are accepted between this instruction and the next instruction. If the
next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation
JMP(long m) /* JMP @Rm */
{

unsigned long temp;

temp=PC;
PC=R[m]+4;
Delay_Slot(temp+2);

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 200 of 484
REJ09B0051-0300

Example:
MOV.L JMP_TABLE,R0 ; Address of R0 = TRGET

JMP @R0 ; Branches to TRGET

MOV R0,R1 ; Executes MOV before branching

.align 4
JMP_TABLE: .data.l TRGET ; Jump table

.................
TRGET: ADD #1,R1 ; ← Branch destination

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 201 of 484
REJ09B0051-0300

6.4.25 JSR Jump to SubRoutine Branch Instruction
Branch to Subroutine Procedure Delayed Branch Instruction

Format Abstract Code Cycle T Bit

JSR @Rm PC → PR, Rm → PC 0100mmmm00001011 2 �

Description

Branches to the subroutine procedure at the address specified by register indirect addressing. The
PC value is stored in the PR. The jump destination is an address specified by the 32-bit data in
general register Rm. The stored/saved PC is the address four bytes after this instruction. The JSR
instruction and RTS instruction are used together for subroutine procedure calls.

Note

Since this is a delayed branch instruction, the instruction after JSR is executed before branching.
No interrupts and address errors are accepted between this instruction and the next instruction. If
the next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation
JSR(long m) /* JSR @Rm */
{

PR=PC;
PC=R[m]+4;
Delay_Slot(PR+2);

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 202 of 484
REJ09B0051-0300

Example:
MOV.L JSR_TABLE,R0 ; Address of R0 = TRGET

JSR @R0 ; Branches to TRGET

XOR R1,R1 ; Executes XOR before branching

ADD R0,R1 ; ← Return address for when the subroutine procedure
is completed (PR data)

...........

.align 4
JSR_TABLE: .data.l TRGET ; Jump table

TRGET: NOP ; ← Procedure entrance

MOV R2,R3 ;

RTS ; Returns to the above ADD instruction

MOV #70,R1 ; Executes MOV before RTS

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 203 of 484
REJ09B0051-0300

6.4.26 LDC LoaD to Control register System Control Instruction
Load to Control
Register

Format Abstract Code Cycle T Bit

LDC Rm,SR Rm → SR 0100mmmm00001110 3 LSB
LDC Rm,GBR Rm → GBR 0100mmmm00011110 1 �
LDC Rm,VBR Rm → VBR 0100mmmm00101110 1 �
LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 5 LSB
LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 1 �
LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 1 �

Description

Store the source operand into control register SR, GBR, or VBR.

Operation
LDCSR(long m) /* LDC Rm,SR */
{

SR=R[m]&0x000063F3;
PC+=2;

}
LDCGBR(long m) /* LDC Rm,GBR */
{

GBR=R[m];
PC+=2;

}
LDCVBR(long m) /* LDC Rm,VBR */
{

VBR=R[m];
PC+=2;

}
LDCMSR(long m) /* LDC.L @Rm+,SR */
{

SR=Read_Long(R[m])&0x000063F3;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 204 of 484
REJ09B0051-0300

R[m]+=4;
PC+=2;

}
LDCMGBR(long m) /* LDC.L @Rm+,GBR */
{

GBR=Read_Long(R[m]);
R[m]+=4;
PC+=2;

}
LDCMVBR(long m) /* LDC.L @Rm+,VBR */
{

VBR=Read_Long(R[m]);
R[m]+=4;
PC+=2;

}

Examples:
LDC R0,SR ; Before execution: R0 = H'FFFFFFFF, SR = H'00000000

; After execution: SR = H'000063F3

LDC.L @R15+,GBR ; Before execution: R15 = H'10000000
; After execution: R15 = H'10000004, GBR = @H'10000000



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 205 of 484
REJ09B0051-0300

6.4.27 LDS LoaD to System register System Control Instruction
Load to System
Register

Format Abstract Code Cycle T Bit
LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 �
LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 �
LDS Rm,PR Rm → PR 0100mmmm00101010 1 �
LDS.L @Rm+, MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 1 �
LDS.L @Rm+, MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 1 �
LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 1 �

Description

Store the source operand into the system register MACH, MACL, or PR.

Operation
LDSMACH(long m) /* LDS Rm,MACH */
{

MACH=R[m];
PC+=2;

}
LDSMACL(long m) /* LDS Rm,MACL */
{

MACL=R[m];
PC+=2;

}
LDSPR(long m) /* LDS Rm,PR */
{

PR=R[m];
PC+=2;

}
LDSMMACH(long m) /* LDS.L @Rm+,MACH */
{

MACH=Read_Long(R[m]);



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 206 of 484
REJ09B0051-0300

R[m]+=4;
PC+=2;

}
LDSMMACL(long m) /* LDS.L @Rm+,MACL */
{

MACL=Read_Long(R[m]);
R[m]+=4;
PC+=2;

}
LDSMPR(long m) /* LDS.L @Rm+,PR */
{

PR=Read_Long(R[m]);
R[m]+=4;
PC+=2;

}

Examples:
LDS R0,PR ; Before execution: R0 = H'12345678, PR = H'00000000

; After execution: PR = H'12345678
LDS.L @R15+,MACL ; Before execution: R15 = H'10000000

; After execution: R15 = H'10000004, MACL = @H'10000000



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 207 of 484
REJ09B0051-0300

6.4.28 MAC.L Multiply and ACcumulate
Long Arithmetic Instruction

Double-Precision
Multiply-and-Accumulate
Operation

Format Abstract Code Cycle T Bit

MAC.L @Rm+, @Rn+ Signed operation,
(Rn) × (Rm) + MAC → MAC

0000nnnnmmmm1111 4 �

Description

Does signed multiplication of 32-bit operands obtained using the contents of general registers Rm
and Rn as addresses. The 64-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Every time an operand is read, they increment Rm and Rn by
four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation of 48 bits
starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL register
are enabled and the result is limited to a range of H'FFFF800000000000 (minimum) and
H'00007FFFFFFFFFFF (maximum).

Operation
MACL(long m,long n) /* MAC.L @Rm+,@Rn+*/
{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;
long tempm,tempn,fnLmL;

tempn=(long)Read_Long(R[n]);
R[n]+=4;
tempm=(long)Read_Long(R[m]);
R[m]+=4;

if ((long)(tempn^tempm)<0) fnLmL=-1;
else fnLmL=0;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 208 of 484
REJ09B0051-0300

if (tempn<0) tempn=0-tempn;
if (tempm<0) tempm=0-tempm;

temp1=(unsigned long)tempn;
temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;

temp0=RmL*RnL;
temp1=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

Res2=0

Res1=temp1+temp2;
if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;
Res0=temp0+temp1;
if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLmL<0){
Res2=~Res2;
if (Res0==0) Res2++;
else Res0=(~Res0)+1;

}
if(S==1){

Res0=MACL+Res0;
if (MACL>Res0) Res2++;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 209 of 484
REJ09B0051-0300

if (MACH&0x00008000);
else Res2+=MACH|0xFFFF0000;
     Res2+=MACH&0x00007FFF;

if(((long)Res2<0)&&(Res2<0xFFFF8000)){
Res2=0xFFFF8000;
Res0=0x00000000;

}
if(((long)Res2>0)&&(Res2>0x00007FFF)){

Res2=0x00007FFF;
Res0=0xFFFFFFFF;

};

MACH=(Res2&0x0000FFFF)|(MACH&0xFFFF0000)
MACL=Res0;

}
else {

Res0=MACL+Res0;
if (MACL>Res0) Res2++;
Res2+=MACH

MACH=Res2;
MACL=Res0;

}
PC+=2;
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 210 of 484
REJ09B0051-0300

Example:
MOVA TBLM,R0 ; Table address

MOV R0,R1 ;

MOVA TBLN,R0 ; Table address

CLRMAC ; MAC register initialization

MAC.L @R0+,@R1+ ;

MAC.L @R0+,@R1+ ;

STS MACL,R0 ; Store result into R0

...............

.align 2 ;

TBLM .data.l H'1234ABCD ;

.data.l H'5678EF01 ;

TBLN .data.l H'0123ABCD ;

.data.l H'4567DEF0 ;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 211 of 484
REJ09B0051-0300

6.4.29 MAC.W Multiply and
ACcumulate Word Arithmetic Instruction

Single-Precision
Multiply-and-Accumulate
Operation

Format Abstract Code Cycle T Bit

MAC.W @Rm+, @Rn+ With sign,
(Rn) × (Rm) + MAC → MAC

0100nnnnmmmm1111 3 �

MAC @Rm+, @Rn+

Description

Does signed multiplication of 16-bit operands obtained using the contents of general registers Rm
and Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Rm and Rn data are incremented by 2 after the operation.

When the S bit is cleared to 0, the operation is 16 × 16 + 64 → 64-bit multiply and accumulate and
the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operation is 16 × 16 + 32 → 32-bit multiply and accumulate and
addition to the MAC register is a saturation operation. For the saturation operation, only the
MACL register is enabled and the result is limited to a range of H'80000000 (minimum) and
H'7FFFFFFF (maximum).

If an overflow occurs, the MACH register is set to H'00000001. The result is stored in the MACL
register. The result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Operation
MACW(long m,long n) /* MAC.W @Rm+,@Rn+*/
{

long tempm,tempn,dest,src,ans;
unsigned long templ;
tempn=(long)Read_Word(R[n]);
R[n]+=2;
tempm=(long)Read_Word(R[m]);
R[m]+=2;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 212 of 484
REJ09B0051-0300

templ=MACL;
tempm=((long)(short)tempn*(long)(short)tempm);
if ((long)MACL>=0) dest=0;
else dest=1;
if ((long)tempm>=0 {

src=0;
tempn=0;

}
else {

src=1;
tempn=0xFFFFFFFF;

}
src+=dest;
MACL+=tempm;
if ((long)MACL>=0) ans=0;
else ans=1;
ans+=dest;
if (S==1) {

if (ans==1) {
MACH=0x00000001;
if (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;

}
}
else {

MACH+=tempn;
if (templ>MACL) MACH+=1;

}
PC+=2;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 213 of 484
REJ09B0051-0300

Example:
MOVA TBLM,R0 ; Table address

MOV R0,R1 ;

MOVA TBLN,R0 ; Table address

CLRMAC ; MAC register initialization

MAC.W @R0+,@R1+ ;

MAC.W @R0+,@R1+ ;

STS MACL,R0 ; Store result into R0

...............

.align 2 ;

TBLM .data.w H'1234 ;

.data.w H'5678 ;

TBLN .data.w H'0123 ;

.data.w H'4567 ;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 214 of 484
REJ09B0051-0300

6.4.30 MOV MOVe data Data Transfer Instruction
Data Transfer

Format Abstract Code Cycle T Bit

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 �

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 �

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 �

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 �

MOV.B @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0000 1 �

MOV.W @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0001 1 �

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 �

MOV.B Rm,@�Rn Rn � 1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 1 �

MOV.W Rm,@�Rn Rn � 2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 1 �

MOV.L Rm,@�Rn Rn � 4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 1 �

MOV.B @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 1 �

MOV.W @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 2 → Rm

0110nnnnmmmm0101 1 �

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 1 �

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 1 �

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 1 �

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 1 �

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign extension → Rn 0000nnnnmmmm1100 1 �

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign extension → Rn 0000nnnnmmmm1101 1 �

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 1 �

Description

Transfers the source operand to the destination. When the operand is stored in memory, the
transferred data can be a byte, word, or longword. Loaded data from memory is stored in a register
after it is sign-extended to a longword.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 215 of 484
REJ09B0051-0300

Operation
MOV(long m,long n) /* MOV Rm,Rn */
{

R[n]=R[m];
PC+=2;

}
MOVBS(long m,long n) /* MOV.B Rm,@Rn */
{

Write_Byte(R[n],R[m]);
PC+=2;

}
MOVWS(long m,long n) /* MOV.W Rm,@Rn */
{

Write_Word(R[n],R[m]);
PC+=2;

}
MOVLS(long m,long n) /* MOV.L Rm,@Rn */
{

Write_Long(R[n],R[m]);
PC+=2;

}
MOVBL(long m,long n) /* MOV.B @Rm,Rn */
{

R[n]=(long)Read_Byte(R[m]);
if ((R[n]&0x80)==0) R[n]&0x000000FF;
else R[n]|=0xFFFFFF00;
PC+=2;

}
MOVWL(long m,long n) /* MOV.W @Rm,Rn */
{

R[n]=(long)Read_Word(R[m]);
if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;
else R[n]|=0xFFFF0000;
PC+=2;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 216 of 484
REJ09B0051-0300

MOVLL(long m,long n) /* MOV.L @Rm,Rn */
{

R[n]=Read_Long(R[m]);
PC+=2;

}
MOVBM(long m,long n) /* MOV.B Rm,@�Rn */
{

Write_Byte(R[n]�1,R[m]);
R[n]�=1;
PC+=2;

}
MOVWM(long m,long n) /* MOV.W Rm,@�Rn */
{

Write_Word(R[n]�2,R[m]);
R[n]�=2;
PC+=2;

}
MOVLM(long m,long n) /* MOV.L Rm,@�Rn */
{

Write_Long(R[n]�4,R[m]);
R[n]�=4;
PC+=2;

}
MOVBP(long m,long n) /* MOV.B @Rm+,Rn */
{

R[n]=(long)Read_Byte(R[m]);
if ((R[n]&0x80)==0) R[n]&0x000000FF;
else R[n]|=0xFFFFFF00;
if (n!=m) R[m]+=1;
PC+=2;

}
MOVWP(long m,long n) /* MOV.W @Rm+,Rn */
{

R[n]=(long)Read_Word(R[m]);
if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 217 of 484
REJ09B0051-0300

else R[n]|=0xFFFF0000;
if (n!=m) R[m]+=2;
PC+=2;

}
MOVLP(long m,long n) /* MOV.L @Rm+,Rn */
{

R[n]=Read_Long(R[m]);
if (n!=m) R[m]+=4;
PC+=2;

}
MOVBS0(long m,long n) /* MOV.B Rm,@(R0,Rn) */
{

Write_Byte(R[n]+R[0],R[m]);
PC+=2;

}
MOVWS0(long m,long n) /* MOV.W Rm,@(R0,Rn) */
{

Write_Word(R[n]+R[0],R[m]);
PC+=2;

}
MOVLS0(long m,long n) /* MOV.L Rm,@(R0,Rn) */
{

Write_Long(R[n]+R[0],R[m]);
PC+=2;

}
MOVBL0(long m,long n) /* MOV.B @(R0,Rm),Rn */
{

R[n]=(long)Read_Byte(R[m]+R[0]);
if ((R[n]&0x80)==0) R[n]&0x000000FF;
else R[n]|=0xFFFFFF00;
PC+=2;

}
MOVWL0(long m,long n) /* MOV.W @(R0,Rm),Rn */
{

R[n]=(long)Read_Word(R[m]+R[0]);



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 218 of 484
REJ09B0051-0300

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;
else R[n]|=0xFFFF0000;
PC+=2;

}
MOVLL0(long m,long n) /* MOV.L @(R0,Rm),Rn */
{

R[n]=Read_Long(R[m]+R[0]);
PC+=2;

}

Example:
MOV R0,R1 ; Before execution: R0 = H'FFFFFFFF, R1 = H'00000000

; After execution: R1 = H'FFFFFFFF

MOV.W R0,@R1 ; Before execution: R0 = H'FFFF7F80
; After execution: @R1 = H'7F80

MOV.B @R0,R1 ; Before execution: @R0 = H'80, R1 = H'00000000
; After execution: R1 = H'FFFFFF80

MOV.W R0,@�R1 ; Before execution: R0 = H'AAAAAAAA, R1 = H'FFFF7F80
; After execution: R1 = H'FFFF7F7E, @R1 = H'AAAA

MOV.L @R0+,R1 ; Before execution: R0 = H'12345670
; After execution: R0 = H'12345674, R1 = @H'12345670

MOV.B R1,@(R0,R2) ; Before execution: R2 = H'00000004, R0 = H'10000000
; After execution: R1 = @H'10000004

MOV.W @(R0,R2),R1 ; Before execution: R2 = H'00000004, R0 = H'10000000
; After execution: R1 = @H'10000004



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 219 of 484
REJ09B0051-0300

6.4.31 MOV MOVe immediate data Data Transfer Instruction
Immediate Data
Transfer

Format Abstract Code Cycle T Bit

MOV #imm,Rn imm → sign extension → Rn 1110nnnniiiiiiii 1 �

MOV.W @(disp, PC),Rn (disp × 2 + PC) → sign extension → Rn 1001nnnndddddddd 1 �

MOV.L @(disp, PC),Rn (disp × 4 + PC) → Rn 1101nnnndddddddd 1 �

Description

Stores immediate data, which has been sign-extended to a longword, into general register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table can be up to PC + 510 bytes. The PC points to
the starting address of the fourth byte after this MOV instruction. If the data is a longword, the 8-
bit displacement is zero-extended and quadrupled. Consequently, the relative interval from the
table can be up to PC + 1020 bytes. The PC points to the starting address of the fourth byte after
this MOV instruction, but the lowest two bits of the PC are corrected to B'00.

Note

The optimum table assignment is at the rear end of the module or one instruction after the
unconditional branch instruction. If the optimum assignment is impossible for the reason of no
unconditional branch instruction in the 510 byte/1020 byte or some other reason, means to jump
past the table by the BRA instruction are required. By assigning this instruction immediately after
the delayed branch instruction, the PC becomes the "first address + 2".

For the Renesas Technology Super H RISC engine assembler, declarations should use scaled
values (×2, ×4) as displacement values.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 220 of 484
REJ09B0051-0300

Operation
MOVI(long i,long n) /* MOV #imm,Rn */
{

if ((i&0x80)==0) R[n]=(0x000000FF & (long)i);
else R[n]=(0xFFFFFF00 | (long)i);
PC+=2;

}
MOVWI(long d,long n) /* MOV.W @(disp,PC),Rn */
{

long disp;

disp=(0x000000FF & (long)d);
R[n]=(long)Read_Word(PC+(disp<<1));
if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;
PC+=2;

}
MOVLI(long d,long n) /* MOV.L @(disp,PC),Rn */
{

long disp;

disp=(0x000000FF & (long)d);
R[n]=Read_Long((PC&0xFFFFFFFC)+(disp<<2));
PC+=2;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 221 of 484
REJ09B0051-0300

Example:
Address

1000 MOV #H'80,R1 ; R1 = H'FFFFFF80
1002 MOV.W IMM,R2 ; R2 = H'FFFF9ABC, IMM means @(H'08,PC)

1004 ADD #�1,R0 ;

1006 TST R0,R0 ; ← PC location used for address calculation for the
MOV.W instruction

1008 MOVT R13 ;

100A BRA NEXT ; Delayed branch instruction

100C MOV.L @(4,PC),R3 ; R3 = H'12345678
100E IMM .data.w H'9ABC ;

1010 .data.w H'1234 ;

1012 NEXT JMP @R3 ; Branch destination of the BRA instruction

1014 CMP/EQ #0,R0 ; ← PC location used for address calculation for the
MOV.L instruction

.align 4 ;

1018 .data.l H'12345678 ;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 222 of 484
REJ09B0051-0300

6.4.32 MOV MOVe peripheral Data Data Transfer Instruction
Peripheral Module
Data Transfer

Format Abstract Code Cycle T Bit

MOV.B @(disp,GBR),R0 (disp + GBR) → sign extension → R0 11000100dddddddd 1 �

MOV.W @(disp,GBR),R0 (disp × 2 + GBR) → sign extension → R0 11000101dddddddd 1 �

MOV.L @(disp,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd 1 �

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd 1 �

MOV.W R0,@(disp,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd 1 �

MOV.L R0,@(disp,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd 1 �

Description

Transfers the source operand to the destination. This instruction is optimum for accessing data in
the peripheral module area. The data can be a byte, word, or longword, but only the R0 register
can be used.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte,
the only change made is to zero-extend the 8-bit displacement. Consequently, an address within
+255 bytes can be specified. When the peripheral module data is a word, the 8-bit displacement is
zero-extended and doubled. Consequently, an address within +510 bytes can be specified. When
the peripheral module data is a longword, the 8-bit displacement is zero-extended and is
quadrupled. Consequently, an address within +1020 bytes can be specified. If the displacement is
too short to reach the memory operand, the above @(R0,Rn) mode must be used after the GBR
data is transferred to a general register. When the source operand is in memory, the loaded data is
stored in the register after it is sign-extended to a longword.

Note

The destination register of a data load is always R0. R0 cannot be accessed by the next instruction
until the load instruction is finished. The instruction order shown in figure 6.1 will give better
results.

MOV.B

AND

ADD

@(12, GBR), R0

#80, R0

#20, R1

MOV.B

ADD

AND

@(12, GBR), R0

#20, R1

#80, R0

Figure 6.1   Using R0 after MOV



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 223 of 484
REJ09B0051-0300

For the Renesas Technology Super H RISC engine assembler, declarations should use scaled
values (×1, ×2, ×4) as displacement values.

Operation
MOVBLG(long d) /* MOV.B @(disp,GBR),R0 */
{

long disp;

disp=(0x000000FF & (long)d);
R[0]=(long)Read_Byte(GBR+disp);
if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFF00;
PC+=2;

}
MOVWLG(long d) /* MOV.W @(disp,GBR),R0 */
{

long disp;

disp=(0x000000FF & (long)d);
R[0]=(long)Read_Word(GBR+(disp<<1));
if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;
PC+=2;

}
MOVLLG(long d) /* MOV.L @(disp,GBR),R0 */
{

long disp;

disp=(0x000000FF & (long)d);
R[0]=Read_Long(GBR+(disp<<2));
PC+=2;

}
MOVBSG(long d) /* MOV.B R0,@(disp,GBR) */
{

long disp;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 224 of 484
REJ09B0051-0300

disp=(0x000000FF & (long)d);
Write_Byte(GBR+disp,R[0]);
PC+=2;

}
MOVWSG(long d) /* MOV.W R0,@(disp,GBR) */
{

long disp;

disp=(0x000000FF & (long)d);
Write_Word(GBR+(disp<<1),R[0]);
PC+=2;

}
MOVLSG(long d) /* MOV.L R0,@(disp,GBR) */
{

long disp;

disp=(0x000000FF & (long)d);
Write_Long(GBR+(disp<<2),R[0]);
PC+=2;

}

Examples:
MOV.L @(2,GBR),R0 ; Before execution: @(GBR + 8) = H'12345670

; After execution: R0 = H'12345670

MOV.B R0,@(1,GBR) ; Before execution: R0 = H'FFFF7F80
; After execution: @(GBR + 1) = H'FFFF7F80



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 225 of 484
REJ09B0051-0300

6.4.33 MOV MOVe structure data Data Transfer Instruction
Structure Data
Transfer

Format Abstract Code Cycle T Bit

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd 1 �

MOV.W R0,@(disp,Rn) R0 → (disp × 2 + Rn) 10000001nnnndddd 1 �

MOV.L Rm,@(disp,Rn) Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd 1 �

MOV.B @(disp,Rm),R0 (disp + Rm) → sign extension → R0 10000100mmmmdddd 1 �

MOV.W @(disp,Rm),R0 (disp × 2 + Rm) → sign extension → R0 10000101mmmmdddd 1 �

MOV.L @(disp,Rm),Rn disp × 4 + Rm) → Rn 0101nnnnmmmmdddd 1 �

Description

Transfers the source operand to the destination. This instruction is optimum for accessing data in a
structure or a stack. The data can be a byte, word, or longword, but when a byte or word is
selected, only the R0 register can be used. When the data is a byte, the only change made is to
zero-extend the 4-bit displacement. Consequently, an address within +15 bytes can be specified.
When the data is a word, the 4-bit displacement is zero-extended and doubled. Consequently, an
address within +30 bytes can be specified. When the data is a longword, the 4-bit displacement is
zero-extended and quadrupled. Consequently, an address within +60 bytes can be specified. If the
displacement is too short to reach the memory operand, the aforementioned @(R0,Rn) mode must
be used. When the source operand is in memory, the loaded data is stored in the register after it is
sign-extended to a longword.

Note

When byte or word data is loaded, the destination register is always R0. R0 cannot be accessed by
the next instruction until the load instruction is finished. The instruction order in figure 6.2 will
give better results.

MOV.B

AND

ADD

@(2, R1), R0

#80, R0

#20, R1

MOV.B

ADD

AND

@(2, R1), R0

#20, R1

#80, R0

Figure 6.2   Using R0 after MOV

For the Renesas Technology SuperH RISC engine assembler, declarations should use scaled
values (×1, ×2, ×4) as displacement values.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 226 of 484
REJ09B0051-0300

Operation
MOVBS4(long d,long n) /* MOV.B R0,@(disp,Rn) */
{

long disp;

disp=(0x0000000F & (long)d);
Write_Byte(R[n]+disp,R[0]);
PC+=2;

}
MOVWS4(long d,long n) /* MOV.W R0,@(disp,Rn) */
{

long disp;

disp=(0x0000000F & (long)d);
Write_Word(R[n]+(disp<<1),R[0]);
PC+=2;

}
MOVLS4(long m,long d,long n) /* MOV.L Rm,@(disp,Rn) */
{

long disp;

disp=(0x0000000F & (long)d);
Write_Long(R[n]+(disp<<2),R[m]);
PC+=2;

}
MOVBL4(long m,long d) /* MOV.B @(disp,Rm),R0 */
{

long disp;

disp=(0x0000000F & (long)d);
R[0]=Read_Byte(R[m]+disp);
if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFF00;
PC+=2;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 227 of 484
REJ09B0051-0300

MOVWL4(long m,long d) /* MOV.W @(disp,Rm),R0 */
{

long disp;

disp=(0x0000000F & (long)d);
R[0]=Read_Word(R[m]+(disp<<1));
if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;
PC+=2;

}
MOVLL4(long m,long d,long n)

/* MOV.L @(disp,Rm),Rn */
{

long disp;

disp=(0x0000000F & (long)d);
R[n]=Read_Long(R[m]+(disp<<2));
PC+=2;

}

Examples:
MOV.L @(2,R0),R1 ; Before execution: @(R0 + 8) = H'12345670

; After execution: R1 = H'12345670
MOV.L R0,@(H'F,R1) ; Before execution: R0 = H'FFFF7F80

; After execution: @(R1 + 60) = H'FFFF7F80



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 228 of 484
REJ09B0051-0300

6.4.34 MOVA MOVe effective Address Data Transfer Instruction
Effective Address
Transfer

Format Abstract Code Cycle T Bit

MOVA @(disp,PC),R0 disp × 4 + PC → R0 11000111dddddddd 1 �

Description

Stores the effective address of the source operand into general register R0. The 8-bit displacement
is zero-extended and quadrupled. Consequently, the relative interval from the operand is PC +
1020 bytes. The PC is the address four bytes after this instruction, but the lowest two bits of the
PC are corrected to B'00.

Note

If this instruction is placed immediately after a delayed branch instruction, the PC must point to an
address specified by (the starting address of the branch destination) + 2.

For the Renesas Technology Super H RISC engine assembler, declarations should use scaled
values (×4) as displacement values.

Operation
MOVA(long d) /* MOVA @(disp,PC),R0 */
{

long disp;

disp=(0x000000FF & (long)d);
R[0]=(PC&0xFFFFFFFC)+(disp<<2);
PC+=2;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 229 of 484
REJ09B0051-0300

Example:
Address .org H'1006
1006 MOVA STR,R0 ; Address of STR → R0

1008 MOV.B @R0,R1 ; R1 = �X� ← PC location after correcting the lowest two bits

100A ADD R4,R5 ; ← Original PC location for address calculation for the
MOVA instruction

.align 4
100C STR: .sdata �XYZP12�
...............
2002 BRA TRGET ; Delayed branch instruction

2004 MOVA @(0,PC),R0 ; Address of TRGET + 2 → R0

2006 NOP ;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 230 of 484
REJ09B0051-0300

6.4.35 MOVT MOVe T bit Data Transfer Instruction
T Bit Transfer

Format Abstract Code Cycle T Bit

MOVT Rn T → Rn 0000nnnn00101001 1 �

Description

Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn, and when T = 0, 0 is
stored in Rn.

Operation
MOVT(long n) /* MOVT Rn */
{

R[n]=(0x00000001 & SR);
PC+=2;

}

Example:
XOR R2,R2 ;R2 = 0
CMP/PZ R2 ;T = 1
MOVT R0 ;R0 = 1
CLRT ;T = 0
MOVT R1 ;R1 = 0



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 231 of 484
REJ09B0051-0300

6.4.36 MUL.L MULtiply Long Arithmetic Instruction
Double-Precision
Multiplication

Format Abstract Code Cycle T Bit

MUL.L Rm,Rn Rn × Rm → MACL 0000nnnnmmmm0111 2 �

Description

Performs 32-bit multiplication of the contents of general registers Rn and Rm, and stores the
bottom 32 bits of the result in the MACL register. The MACH register data does not change.

Operation
MUL.L(long m,long n) /* MUL.L Rm,Rn */
{

MACL=R[n]*R[m];
PC+=2;

}

Example:
MULL R0,R1 ; Before execution: R0 = H'FFFFFFFE, R1 = H'00005555

; After execution: MACL = H'FFFF5556
STS MACL,R0 ; Operation result



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 232 of 484
REJ09B0051-0300

6.4.37 MULS.W MULtiply as Signed Word Arithmetic Instruction
Signed
Multiplication

Format Abstract Code Cycle T Bit

MULS.W Rm,Rn
MULS Rm,Rn

Signed operation, Rn × Rm → MACL 0010nnnnmmmm1111 1 �

Description

Performs 16-bit multiplication of the contents of general registers Rn and Rm, and stores the 32-
bit result in the MACL register. The operation is signed and the MACH register data does not
change.

Operation
MULS(long m,long n) /* MULS Rm,Rn */
{

MACL=((long)(short)R[n]*(long)(short)R[m]);
PC+=2;

}

Example:
MULS R0,R1 ; Before execution: R0 = H'FFFFFFFE, R1 = H'00005555

; After execution: MACL = H'FFFF5556
STS MACL,R0 ; Operation result



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 233 of 484
REJ09B0051-0300

6.4.38 MULU.W MULtiply as Unsigned Word Arithmetic Instruction
Unsigned Multiplication

Format Abstract Code Cycle T Bit

MULU.W Rm,Rn
MULU Rm,Rn

Unsigned, Rn × Rm → MACL 0010nnnnmmmm1110 1 �

Description

Performs 16-bit multiplication of the contents of general registers Rn and Rm, and stores the 32-
bit result in the MACL register. The operation is unsigned and the MACH register data does not
change.

Operation
MULU(long m,long n) /* MULU Rm,Rn */
{

MACL=((unsigned long)(unsigned short)R[n]
*(unsigned long)(unsigned short)R[m]);

PC+=2;
}

Example:
MULU R0,R1 ; Before execution: R0 = H'00000002, R1 = H'FFFFAAAA

; After execution: MACL = H'00015554
STS MACL,R0 ; Operation result



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 234 of 484
REJ09B0051-0300

6.4.39 NEG NEGate Arithmetic Instruction
Sign Inversion

Format Abstract Code Cycle T Bit

NEG Rm,Rn 0 � Rm → Rn 0110nnnnmmmm1011 1 �

Description

Takes the two�s complement of data in general register Rm, and stores the result in Rn. This
effectively subtracts Rm data from 0, and stores the result in Rn.

Operation
NEG(long m,long n) /* NEG Rm,Rn */
{

R[n]=0-R[m];
PC+=2;

}

Example:
NEG R0,R1 ; Before execution: R0 = H'00000001

; After execution: R1 = H'FFFFFFFF



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 235 of 484
REJ09B0051-0300

6.4.40 NEGC NEGate with Carry Arithmetic Instruction
Sign Inversion with Borrow

Format Abstract Code Cycle T Bit

NEGC Rm,Rn 0 � Rm � T → Rn, Borrow → T 0110nnnnmmmm1010 1 Borrow

Description

Subtracts general register Rm data and the T bit from 0, and stores the result in Rn. If a borrow is
generated, T bit changes accordingly. This instruction is used for inverting the sign of a value that
has more than 32 bits.

Operation
NEGC(long m,long n) /* NEGC Rm,Rn */
{

unsigned long temp;

temp=0-R[m];
R[n]=temp-T;
if (0<temp) T=1;
else T=0;
if (temp<R[n]) T=1;
PC+=2;

}

Examples:
CLRT ; Sign inversion of R1 and R0 (64 bits)

NEGC R1,R1 ; Before execution: R1 = H'00000001, T = 0
; After execution: R1 = H'FFFFFFFF, T = 1

NEGC R0,R0 ; Before execution: R0 = H'00000000, T = 1
; After execution: R0 = H'FFFFFFFF, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 236 of 484
REJ09B0051-0300

6.4.41 NOP No OPeration System Control Instruction
No Operation

Format Abstract Code Cycle T Bit

NOP No operation 0000000000001001 1 �

Description

Increments the PC to execute the next instruction.

Operation
NOP() /* NOP */
{

PC+=2;
}

Example:
NOP ; Executes in one cycle



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 237 of 484
REJ09B0051-0300

6.4.42 NOT NOT-logical complement Logical Instruction
Bit Inversion

Format Abstract Code Cycle T Bit

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 1 �

Description

Takes the one�s complement of general register Rm data, and stores the result in Rn. This
effectively inverts each bit of Rm data and stores the result in Rn.

Operation
NOT(long m,long n) /* NOT Rm,Rn */
{

R[n]=~R[m];
PC+=2;

}

Example:
NOT R0,R1 ; Before execution: R0 = H'AAAAAAAA

; After execution: R1 = H'55555555



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 238 of 484
REJ09B0051-0300

6.4.43 OR OR logical Logical Instruction
Logical OR

Format Abstract Code Cycle T Bit

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 �

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 �

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm → (R0 + GBR) 11001111iiiiiiii 3 �

Description

Logically ORs the contents of general registers Rn and Rm, and stores the result in Rn. The
contents of general register R0 can also be ORed with zero-extended 8-bit immediate data, or 8-bit
memory data accessed by using indirect indexed GBR addressing can be ORed with 8-bit
immediate data.

Operation
OR(long m,long n) /* OR Rm,Rn */
{

R[n]|=R[m];
PC+=2;

}
ORI(long i) /* OR #imm,R0 */
{

R[0]|=(0x000000FF & (long)i);
PC+=2;

}
ORM(long i) /* OR.B #imm,@(R0,GBR) */
{

long temp;

temp=(long)Read_Byte(GBR+R[0]);
temp|=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 239 of 484
REJ09B0051-0300

Examples:
OR R0,R1 ; Before execution: R0 = H'AAAA5555, R1 = H'55550000

; After execution: R1 = H'FFFF5555
OR #H'F0,R0 ; Before execution: R0 = H'00000008

; After execution: R0 = H'000000F8
OR.B #H'50,@(R0,GBR) ; Before execution: @(R0,GBR) = H'A5

; After execution: @(R0,GBR) = H'F5



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 240 of 484
REJ09B0051-0300

6.4.44 ROTCL ROTate with Carry Left Shift Instruction
One-Bit Left Rotation
through T Bit

Format Abstract Code Cycle T Bit

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

Description

Rotates the contents of general register Rn and the T bit to the left by one bit, and stores the result
in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.3).

LSBMSB

T
ROTCL

Figure 6.3   Rotate with Carry Left

Operation
ROTCL(long n) /* ROTCL Rn */
{

long temp;

if ((R[n]&0x80000000)==0) temp=0;
else temp=1;
R[n]<<=1;
if (T==1) R[n]|=0x00000001;
else R[n]&=0xFFFFFFFE;
if (temp==1) T=1;
else T=0;
PC+=2;

}

Example:
ROTCL R0 ; Before execution: R0 = H'80000000, T = 0

; After execution: R0 = H'00000000, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 241 of 484
REJ09B0051-0300

6.4.45 ROTCR ROTate with Carry Right Shift Instruction
One-Bit Right Rotation
through T Bit

Format Abstract Code Cycle T Bit

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

Description

Rotates the contents of general register Rn and the T bit to the  right by one bit, and stores the
result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.4).

LSBMSB

T
ROTCR

Figure 6.4   Rotate with Carry Right

Operation
ROTCR(long n) /* ROTCR Rn */
{

long temp;

if ((R[n]&0x00000001)==0) temp=0;
else temp=1;
R[n]>>=1;
if (T==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
if (temp==1) T=1;
else T=0;
PC+=2;

}

Examples:
ROTCR R0 ; Before execution: R0 = H'00000001, T = 1

; After execution: R0 = H'80000000, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 242 of 484
REJ09B0051-0300

6.4.46 ROTL ROTate Left Shift Instruction
One-Bit Left
Rotation

Format Abstract Code Cycle T Bit

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

Description

Rotates the contents of general register Rn to the left by one bit, and stores the result in Rn (figure
6.5). The bit that is shifted out of the operand is transferred to the T bit.

LSBMSB

TROTL

Figure 6.5   Rotate Left

Operation
ROTL(long n) /* ROTL Rn */
{

if ((R[n]&0x80000000)==0) T=0;
else T=1;
R[n]<<=1;
if (T==1) R[n]|=0x00000001;
else R[n]&=0xFFFFFFFE;
PC+=2;

}

Examples:
ROTL R0 ; Before execution: R0 = H'80000000, T = 0

; After execution: R0 = H'00000001, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 243 of 484
REJ09B0051-0300

6.4.47 ROTR ROTate Right Shift Instruction
One-Bit Right
Rotation

Format Abstract Code Cycle T Bit

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

Description

Rotates the contents of general register Rn to the right by one bit, and stores the result in Rn
(figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

LSBMSB

T
ROTR

Figure 6.6   Rotate Right

Operation
ROTR(long n) /* ROTR Rn */
{

if ((R[n]&0x00000001)==0) T=0;
else T=1;
R[n]>>=1;
if (T==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
PC+=2;

}

Examples:
ROTR R0 ; Before execution: R0 = H'00000001, T = 0

; After execution: R0 = H'80000000, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 244 of 484
REJ09B0051-0300

6.4.48 RTE ReTurn from Exception System Control Instruction
Return from Exception Handling Delayed Branch Instruction

Format Abstract Code Cycle T Bit

RTE Delayed branch, Stack area → PC/SR 0000000000101011 4 LSB

Description

Returns from an interrupt routine. The PC and SR values are restored from the stack, and the
program continues from the address specified by the restored PC value. The T bit is used as the
LSB bit in the SR register restored from the stack area.

Note

Since this is a delayed branch instruction, the instruction after this RTE is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation
RTE() /* RTE */
{

unsigned long temp;

temp=PC;
PC=Read_Long(R[15])+4;
R[15]+=4;
SR=Read_Long(R[15])&0x000063F3;
R[15]+=4;
Delay_Slot(temp+2);

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 245 of 484
REJ09B0051-0300

Example:
RTE ; Returns to the original routine
ADD #8,R14 ; Executes ADD before branching

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 246 of 484
REJ09B0051-0300

6.4.49 RTS ReTurn from Subroutine Branch Instruction
Return from Subroutine Procedure Delayed Branch Instruction

Format Abstract Code Cycle T Bit

RTS Delayed branch, PR → PC 0000000000001011 2 �

Description

Returns from a subroutine procedure. The PC values are restored from the PR, and the program
continues from the address specified by the restored PC value. This instruction is used to return to
the program from a subroutine program called by a BSR, BSRF, or JSR instruction.

Note

Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation
RTS() /* RTS */
{

unsigned long temp;

temp=PC;
PC=PR+4;
Delay_Slot(temp+2);

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 247 of 484
REJ09B0051-0300

Example:
MOV.L TABLE,R3 ; R3 = Address of TRGET

JSR @R3 ; Branches to TRGET

NOP ; Executes NOP before branching

ADD R0,R1 ; ← Return address for when the subroutine procedure is
completed (PR data)

   .............
TABLE: .data.l TRGET;

   .............
TRGET: MOV R1,R0 ; ← Procedure entrance

RTS ; PR data → PC

MOV #12,R0 ;

Executes MOV before branching

Note: When a delayed branch instruction is used, the branching operation takes place after the
slot instruction is executed, but the execution of instructions (register update, etc.) takes
place in the sequence delayed branch instruction → delayed slot instruction. For example,
even if a delayed slot instruction is used to change the register where the branch
destination address is stored, the register content previous to the change will be used as the
branch destination address.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 248 of 484
REJ09B0051-0300

6.4.50 SETT SET T bit System Control Instruction
T Bit Setting

Format Abstract Code Cycle T Bit

SETT 1 → T 0000000000011000 1 1

Description

Sets the T bit to 1.

Operation
SETT() /* SETT */
{

T=1;
PC+=2;

}

Example:
SETT ; Before execution: T = 0

; After execution: T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 249 of 484
REJ09B0051-0300

6.4.51 SHAL SHift Arithmetic Left Shift Instruction
One-Bit Left
Arithmetic Shift

Format Abstract Code Cycle T Bit

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

Description

Arithmetically shifts the contents of general register Rn to the left by one bit, and stores the result
in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.7).

LSBMSB

T 0SHAL

Figure 6.7   Shift Arithmetic Left

Operation
SHAL(long n) /* SHAL Rn (Same as SHLL) */
{

if ((R[n]&0x80000000)==0) T=0;
else T=1;
R[n]<<=1;
PC+=2;

}

Example:
SHAL R0 ; Before execution: R0 = H'80000001, T = 0

; After execution: R0 = H'00000002, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 250 of 484
REJ09B0051-0300

6.4.52 SHAR SHift Arithmetic Right Shift Instruction
One-Bit Right
Arithmetic Shift

Format Abstract Code Cycle T Bit

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

Description

Arithmetically shifts the contents of general register Rn to the right by one bit, and stores the
result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.8).

LSBMSB

T
SHAR

Figure 6.8   Shift Arithmetic Right

Operation
SHAR(long n) /* SHAR Rn */
{

long temp;

if ((R[n]&0x00000001)==0) T=0;
else T=1;
if ((R[n]&0x80000000)==0) temp=0;
else temp=1;
R[n]>>=1;
if (temp==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
PC+=2;

}

Example:
SHAR R0 ; Before execution: R0 = H'80000001, T = 0

; After execution: R0 = H'C0000000, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 251 of 484
REJ09B0051-0300

6.4.53 SHLL SHift Logical Left Shift Instruction
One-Bit Left
Logical Shift

Format Abstract Code Cycle T Bit

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

Description

Logically shifts the contents of general register Rn to the left by one bit, and stores the result in
Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.9).

LSBMSB

T 0SHLL

Figure 6.9   Shift Logical Left

Operation
SHLL(long n) /* SHLL Rn (Same as SHAL) */
{

if ((R[n]&0x80000000)==0) T=0;
else T=1;
R[n]<<=1;
PC+=2;

}

Examples:
SHLL R0 ; Before execution: R0 = H'80000001, T = 0

; After execution: R0 = H'00000002, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 252 of 484
REJ09B0051-0300

6.4.54 SHLLn n bits SHift Logical Left Shift Instruction
n-Bit Left
Logical Shift

Format Abstract Code Cycle T Bit

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 1 �
SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 1 �
SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 1 �

Description

Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and stores the
result in Rn. Bits that are shifted out of the operand are not stored (figure 6.10).

0

0

0

MSB LSB

MSB LSB

MSB LSB

SHLL2

SHLL8

SHLL16

Figure 6.10   Shift Logical Left n Bits



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 253 of 484
REJ09B0051-0300

Operation
SHLL2(long n) /* SHLL2 Rn */

{
R[n]<<=2;
PC+=2;

}
SHLL8(long n) /* SHLL8 Rn */
{

R[n]<<=8;
PC+=2;

}
SHLL16(long n) /* SHLL16 Rn */
{

R[n]<<=16;
PC+=2;

}

Examples:
SHLL2 R0 ; Before execution: R0 = H'12345678

; After execution: R0 = H'48D159E0
SHLL8 R0 ; Before execution: R0 = H'12345678

; After execution: R0 = H'34567800
SHLL16 R0 ; Before execution: R0 = H'12345678

; After execution: R0 = H'56780000



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 254 of 484
REJ09B0051-0300

6.4.55 SHLR SHift Logical Right Shift Instruction
One-Bit Right
Logical Shift

Format Abstract Code Cycle T Bit

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

Description

Logically shifts the contents of general register Rn to the right by one bit, and stores the result in
Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.11).

LSBMSB

T0SHLR

Figure 6.11   Shift Logical Right

Operation
SHLR(long n) /* SHLR Rn */
{

if ((R[n]&0x00000001)==0) T=0;
else T=1;
R[n]>>=1;
R[n]&=0x7FFFFFFF;
PC+=2;

}

Examples:
SHLR R0 ; Before execution: R0 = H'80000001, T = 0

; After execution: R0 = H'40000000, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 255 of 484
REJ09B0051-0300

6.4.56 SHLRn n bits SHift Logical Right Shift Instruction
n-Bit Right
Logical Shift

Format Abstract Code Cycle T Bit

SHLR2 Rn Rn>>2 → Rn 0100nnnn00001001 1 �
SHLR8 Rn Rn>>8 → Rn 0100nnnn00011001 1 �
SHLR16 Rn Rn>>16 → Rn 0100nnnn00101001 1 �

Description

Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits, and stores the
result in Rn. Bits that are shifted out of the operand are not stored (figure 6.12).

0

0

0

MSB LSB

MSB LSB

MSB LSB
SHLR2

SHLR8

SHLR16

Figure 6.12   Shift Logical Right n Bits



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 256 of 484
REJ09B0051-0300

Operation
SHLR2(long n) /* SHLR2 Rn */
{

R[n]>>=2;
R[n]&=0x3FFFFFFF;
PC+=2;

}
SHLR8(long n) /* SHLR8 Rn */
{

R[n]>>=8;
R[n]&=0x00FFFFFF;
PC+=2;

}
SHLR16(long n) /* SHLR16 Rn */
{

R[n]>>=16;
R[n]&=0x0000FFFF;
PC+=2;

}

Examples:
SHLR2 R0 ; Before execution: R0 = H'12345678

; After execution: R0 = H'048D159E
SHLR8 R0 ; Before execution: R0 = H'12345678

; After execution: R0 = H'00123456
SHLR16 R0 ; Before execution: R0 = H'12345678

; After execution: R0 = H'00001234



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 257 of 484
REJ09B0051-0300

6.4.57 SLEEP SLEEP System Control Instruction
Transition to Power-Down Mode

Format Abstract Code Cycle T Bit

SLEEP Sleep 0000000000011011 5 �

Description

Sets the CPU into power-down mode. In power-down mode, instruction execution stops, but the
CPU internal status is maintained, and the CPU waits for an interrupt request. If an interrupt is
requested, the CPU exits the power-down mode and begins exception processing.

Note

The number of cycles given is for the transition to sleep mode.

Operation
SLEEP() /* SLEEP */
{

wait_for_exception;
}

Example:
SLEEP ; Enters power-down mode



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 258 of 484
REJ09B0051-0300

6.4.58 STC STore Control register System Control Instruction
Store from Control Register

Format Abstract Code Cycle T Bit

STC SR,Rn SR → Rn 0000nnnn00000010 2 �
STC GBR,Rn GBR → Rn 0000nnnn00010010 1 �
STC VBR,Rn VBR → Rn 0000nnnn00100010 1 �
STC.L SR,@-Rn Rn � 4 → Rn, SR → (Rn) 0100nnnn00000011 2 �
STC.L GBR,@-Rn Rn � 4 → Rn, GBR → (Rn) 0100nnnn00010011 1 �
STC.L VBR,@-Rn Rn � 4 → Rn, VBR → (Rn) 0100nnnn00100011 1 �

Description

Stores control register SR, GBR, or VBR data into a specified destination.

Operation
STCSR(long n) /* STC SR,Rn */
{

R[n]=SR;
PC+=2;

}
STCGBR(long n) /* STC GBR,Rn */
{

R[n]=GBR;
PC+=2;

}
STCVBR(long n) /* STC VBR,Rn */
{

R[n]=VBR;
PC+=2;

}
STCMSR(long n) /* STC.L SR,@-Rn */
{

R[n]-=4;
Write_Long(R[n],SR);



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 259 of 484
REJ09B0051-0300

PC+=2;
}
STCMGBR(long n) /* STC.L GBR,@-Rn */
{

R[n]-=4;
Write_Long(R[n],GBR);
PC+=2;

}
STCMVBR(long n) /* STC.L VBR,@-Rn */
{

R[n]-=4;
Write_Long(R[n],VBR);
PC+=2;

}

Examples:
STC SR,R0 ; Before execution: R0 = H'FFFFFFFF, SR = H'00000000

; After execution: R0 = H'00000000
STC.L GBR,@-R15 ; Before execution: R15 = H'10000004

; After execution: R15 = H'10000000, @R15 = GBR



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 260 of 484
REJ09B0051-0300

6.4.59 STS STore System register System Control Instruction
Store from
System Register

Format Abstract Code Cycle T Bit

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 �
STS MACL,Rn MACL → Rn 0000nnnn00011010 1 �
STS PR,Rn PR → Rn 0000nnnn00101010 1 �
STS.L MACH,@�Rn Rn � 4 → Rn, MACH → (Rn) 0100nnnn00000010 1 �
STS.L MACL,@�Rn Rn � 4 → Rn, MACL → (Rn) 0100nnnn00010010 1 �
STS.L PR,@�Rn Rn � 4 → Rn, PR → (Rn) 0100nnnn00100010 1 �

Description

Stores data from system register MACH, MACL, or PR into a specified destination.

Operation
STSMACH(long n) /* STS MACH,Rn */
{

R[n]=MACH;
PC+=2;

}
STSMACL(long n) /* STS MACL,Rn */
{

R[n]=MACL;
PC+=2;

}
STSPR(long n) /* STS PR,Rn */
{

R[n]=PR;
PC+=2;

}
STSMMACH(long n) /* STS.L MACH,@�Rn */
{

R[n]�=4;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 261 of 484
REJ09B0051-0300

Write_Long(R[n],MACH);
PC+=2;

}
STSMMACL(long n) /* STS.L MACL,@�Rn */
{

R[n]�=4;
Write_Long(R[n],MACL);
PC+=2;

}

STSMPR(long n) /* STS.L PR,@�Rn */
{

R[n]�=4;
Write_Long(R[n],PR);
PC+=2;

}

Example:
STS MACH,R0 ; Before execution: R0 = H'FFFFFFFF, MACH = H'00000000

; After execution: R0 = H'00000000
STS.L PR,@�R15 ; Before execution: R15 = H'10000004

; After execution: R15 = H'10000000, @R15 = PR



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 262 of 484
REJ09B0051-0300

6.4.60 SUB SUBtract binary Arithmetic Instruction
Binary Subtraction

Format Abstract Code Cycle T Bit

SUB Rm,Rn Rn � Rm → Rn 0011nnnnmmmm1000 1 �

Description

Subtracts general register Rm data from Rn data, and stores the result in Rn. To subtract
immediate data, use ADD #imm,Rn.

Operation
SUB(long m,long n) /* SUB Rm,Rn */
{

R[n]-=R[m];
PC+=2;

}

Example:
SUB R0,R1 ; Before execution: R0 = H'00000001, R1 = H'80000000

; After execution: R1 = H'7FFFFFFF



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 263 of 484
REJ09B0051-0300

6.4.61 SUBC SUBtract with Carry Arithmetic Instruction
Binary Subtraction with Borrow

Format Abstract Code Cycle T Bit

SUBC Rm,Rn Rn � Rm� T → Rn, Borrow → T 0011nnnnmmmm1010 1 Borrow

Description

Subtracts Rm data and the T bit value from general register Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction is used for subtraction of data that has
more than 32 bits.

Operation
SUBC(long m,long n) /* SUBC Rm,Rn */
{

unsigned long tmp0,tmp1;

tmp1=R[n]-R[m];
tmp0=R[n];
R[n]=tmp1-T;
if (tmp0<tmp1) T=1;
else T=0;
if (tmp1<R[n]) T=1;
PC+=2;

}

Examples:
CLRT ; R0:R1(64 bits) � R2:R3(64 bits) = R0:R1(64 bits)

SUBC R3,R1 ; Before execution: T = 0, R1 = H'00000000, R3 = H'00000001
; After execution: T = 1, R1 = H'FFFFFFFF

SUBC R2,R0 ; Before execution: T = 1, R0 = H'00000000, R2 = H'00000000
; After execution: T = 1, R0 = H'FFFFFFFF



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 264 of 484
REJ09B0051-0300

6.4.62 SUBV SUBtract with (V flag)
underflow check Arithmetic Instruction

Binary Subtraction
with Underflow Check

Format Abstract Code Cycle T Bit
SUBV Rm,Rn Rn � Rm → Rn, underflow → T 0011nnnnmmmm1011 1 Underflow

Description

Subtracts Rm data from general register Rn data, and stores the result in Rn. If an underflow
occurs, the T bit is set to 1.

Operation
SUBV(long m,long n) /* SUBV Rm,Rn */
{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;
else dest=1;
if ((long)R[m]>=0) src=0;
else src=1;
src+=dest;
R[n]-=R[m];
if ((long)R[n]>=0) ans=0;
else ans=1;
ans+=dest;
if (src==1) {

if (ans==1) T=1;
else T=0;

}
else T=0;
PC+=2;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 265 of 484
REJ09B0051-0300

Examples:
SUBV R0,R1 ; Before execution: R0 = H'00000002, R1 = H'80000001

; After execution: R1 = H'7FFFFFFF, T = 1
SUBV R2,R3 ; Before execution: R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

; After execution: R3 = H'80000000, T = 1



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 266 of 484
REJ09B0051-0300

6.4.63 SWAP SWAP register halves Data Transfer Instruction
Upper-/Lower-Half
Swap

Format Abstract Code Cycle T Bit

SWAP.B Rm,Rn Rm → Swap upper and lower
halves of lower 2 bytes → Rn

0110nnnnmmmm1000 1 �

SWAP.W Rm,Rn Rm → Swap upper and lower
word → Rn

0110nnnnmmmm1001 1 �

Description

Swaps the upper and lower bytes of the general register Rm data, and stores the result in Rn. If a
byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 bits of Rm are
transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm are swapped for
bits 16 to 31.

Operation
SWAPB(long m,long n) /* SWAP.B Rm,Rn */
{

unsigned long temp0,temp1;

temp0=R[m]&0xffff0000;
temp1=(R[m]&0x000000ff)<<8;
R[n]=(R[m]>>8)&0x000000ff;
R[n]=R[n]|temp1|temp0;
PC+=2;

}
SWAPW(long m,long n) /* SWAP.W Rm,Rn */
{

unsigned long temp;
temp=(R[m]>>16)&0x0000FFFF;
R[n]=R[m]<<16;
R[n]|=temp;
PC+=2;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 267 of 484
REJ09B0051-0300

Examples:
SWAP.B R0,R1 ; Before execution: R0 = H'12345678

; After execution: R1 = H'12347856
SWAP.W R0,R1 ; Before execution: R0 = H'12345678

; After execution: R1 = H'56781234



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 268 of 484
REJ09B0051-0300

6.4.64 TAS Test And Set Logical Instruction
Memory Test
and Bit Setting

Format Abstract Code Cycle T Bit

TAS.B @Rn When (Rn) is 0, 1 → T, 1 → MSB
of (Rn)

0100nnnn00011011 3 Test results

Description

Reads byte data from the address specified by general register Rn, and sets the T bit to 1 if the data
is 0, or clears the T bit to 0 if the data is not 0. Then, data bit 7 is set to 1, and the data is written to
the address specified by Rn. During this operation, the bus is not released.

Operation
TAS(long n) /* TAS.B @Rn */
{

long temp;

temp=(long)Read_Byte(R[n]); /* Bus Lock enable */
if (temp==0) T=1;
else T=0;
temp|=0x00000080;
Write_Byte(R[n],temp); /* Bus Lock disable */
PC+=2;

}

Example:
_LOOP TAS.B @R7 ; R7 = 1000

BF _LOOP ; Loops until data in address 1000 is 0



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 269 of 484
REJ09B0051-0300

6.4.65 TRAPA TRAP Always System Control Instruction
Trap Exception
Handling

Format Abstract Code Cycle T Bit

TRAPA #imm PC/SR → Stack area, (imm × 4 + VBR)
→ PC

11000011iiiiiiii 5 �

Description

Starts the trap exception processing. The PC and SR values are stored on the stack, and the
program branches to an address specified by the vector. The vector is a memory address obtained
by zero-extending the 8-bit immediate data and then quadrupling it. The PC is the start address of
the next instruction. TRAPA and RTE are both used together for system calls.

Note

For the Renesas Technology Super H RISC engine assembler, declarations should use scaled
values (×4) as displacement values.

Operation
TRAPA(long i) /* TRAPA #imm */
{

long imm;

imm=(0x000000FF & i);
R[15]-=4;
Write_Long(R[15],SR);
R[15]-=4;
Write_Long(R[15],PC�2);
PC=Read_Long(VBR+(imm<<2))+4;

}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 270 of 484
REJ09B0051-0300

Example:
Address

VBR+H'80 .data.l 10000000 ;

   ..........
TRAPA #H'20 ; Branches to an address specified by data in address VBR + H'80

TST #0,R0 ; ← Return address from the trap routine (stacked PC value)

   ...........
   ..........
100000000 XOR R0,R0 ; ← Trap routine entrance

100000002 RTE ; Returns to the TST instruction

100000004 NOP ; Executes NOP before RTE



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 271 of 484
REJ09B0051-0300

6.4.66 TST TeST logical Logical Instruction
AND Operation
T Bit Setting

Format Abstract Code Cycle T Bit

TST Rm,Rn Rn & Rm, when result is 0, 1 → T 0010nnnnmmmm1000 1 Test
results

TST #imm,R0 R0 & imm, when result is 0, 1 → T 11001000iiiiiiii 1 Test
results

TST.B #imm,
@(R0,GBR)

(R0 + GBR) & imm, when result is
0, 1 → T

11001100iiiiiiii 3 Test
results

Description

Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to 1 if the result is
0 or clears the T bit to 0 if the result is not 0. The Rn data does not change. The contents of general
register R0 can also be ANDed with zero-extended 8-bit immediate data, or the contents of 8-bit
memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit immediate data.
The R0 and memory data do not change.

Operation
TST(long m,long n) /* TST Rm,Rn */
{

if ((R[n]&R[m])==0) T=1;
else T=0;
PC+=2;

}
TSTI(long i) /* TEST #imm,R0 */
{

long temp;

temp=R[0]&(0x000000FF & (long)i);
if (temp==0) T=1;
else T=0;
PC+=2;

}
TSTM(long i) /* TST.B #imm,@(R0,GBR) */



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 272 of 484
REJ09B0051-0300

{
long temp;

temp=(long)Read_Byte(GBR+R[0]);
temp&=(0x000000FF & (long)i);
if (temp==0) T=1;
else T=0;
PC+=2;

}

Examples:
TST R0,R0 ; Before execution: R0 = H'00000000

; After execution: T = 1
TST #H'80,R0 ; Before execution: R0 = H'FFFFFF7F

; After execution: T = 1
TST.B #H'A5,@(R0,GBR) ; Before execution: @(R0,GBR) = H'A5

; After execution: T = 0



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 273 of 484
REJ09B0051-0300

6.4.67 XOR eXclusive OR logical Logical Instruction
Exclusive
Logical OR

Format Abstract Code Cycle T Bit

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 �
XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 �
XOR.B #imm,

@(R0,GBR)
(R0 + GBR) ^ imm → (R0 + GBR) 11001110iiiiiiii 3 �

Description

Exclusive ORs the contents of general registers Rn and Rm, and stores the result in Rn. The
contents of general register R0 can also be exclusive ORed with zero-extended 8-bit immediate
data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive ORed with
8-bit immediate data.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 274 of 484
REJ09B0051-0300

Operation
XOR(long m,long n) /* XOR Rm,Rn */
{

R[n]^=R[m];
PC+=2;

}
XORI(long i) /* XOR #imm,R0 */
{

R[0]^=(0x000000FF & (long)i);
PC+=2;

}
XORM(long i) /* XOR.B #imm,@(R0,GBR) */
{

long temp;

temp=(long)Read_Byte(GBR+R[0]);
temp^=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;

}

Examples:
XOR R0,R1 ; Before execution: R0 = H'AAAAAAAA, R1 = H'55555555

; After execution: R1 = H'FFFFFFFF
XOR #H'F0,R0 ; Before execution: R0 = H'FFFFFFFF

; After execution: R0 = H'FFFFFF0F
XOR.B #H'A5,@(R0,GBR) ; Before execution: @(R0,GBR) = H'A5

; After execution: @(R0,GBR) = H'00



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 275 of 484
REJ09B0051-0300

6.4.68 XTRCT eXTRaCT Data Transfer Instruction
Middle Extraction
from Linked Registers

Format Abstract Code Cycle T Bit

XTRCT Rm,Rn Rm: Center 32 bits of Rn → Rn 0010nnnnmmmm1101 1 �

Description

Extracts the middle 32 bits from the 64 bits of coupled general registers Rm and Rn, and stores the
32 bits in Rn (figure 6.13).

Rm Rn

Rn

MSB MSBLSB LSB

Figure 6.13   Extract

Operation
XTRCT(long m,long n) /* XTRCT Rm,Rn */
{

unsigned long temp;

temp=(R[m]<<16)&0xFFFF0000;
R[n]=(R[n]>>16)&0x0000FFFF;
R[n]|=temp;
PC+=2;

}

Example:
XTRCT R0,R1 ; Before execution: R0 = H'01234567, R1 = H'89ABCDEF

; After execution: R1 = H'456789AB



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 276 of 484
REJ09B0051-0300

6.5 Floating-Point Instructions and FPU-Related CPU Instructions

6.5.1 FABS Floating-point ABSolute value Floating-Point Instruction
Floating-Point
Absolute Value

PR Format Abstract Code Cycle T Bit
0 FABS  FRn |FRn| → FRn 1111nnnn01011101 1 �
1 FABS  DRn |DRn| → DRn 1111nnn001011101 1 �

Description

This instruction clears the most significant bit of the contents of floating-point register FRn/DRn
to 0, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.

Operation
void FABS (int n){
     FR[n] = FR[n] & 0x7fffffff;
     pc += 2;
}
/* Same operation is performed regardless of precision. */

Possible Exceptions:

None



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 277 of 484
REJ09B0051-0300

6.5.2 FADD Floating-point ADD Floating-Point Instruction
Floating-Point
Addition

PR Format Abstract Code Cycle T Bit
0 FADD   FRm,FRn FRn+FRm → FRn 1111nnnnmmmm0000 1 �
1 FADD   DRm,DRn DRn+DRm → DRn 1111nnn0mmm00000 6 �

Description

When FPSCR.PR = 0: Arithmetically adds the two single-precision floating-point numbers in FRn
and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically adds the two double-precision floating-point numbers in
DRn and DRm, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation
void FADD (int m,n)
{
     pc += 2;
     clear_cause();
     if((data_type_of(m) == sNaN) ||
         (data_type_of(n) == sNaN)) invalid(n);
     else if((data_type_of(m) == qNaN) ||
             (data_type_of(n) == qNaN)) qnan(n);
     else if((data_type_of(m) == DENORM) ||
             (data_type_of(n) == DENORM)) set_E();
     else switch (data_type_of(m)){
         case NORM: switch (data_type_of(n)){
             case NORM:    normal_faddsub(m,n,ADD); break;
             case PZERO:



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 278 of 484
REJ09B0051-0300

             case NZERO:register_copy(m,n); break;
             default:      break;
         }          break;
         case PZERO: switch (data_type_of(n)){
             case NZERO:   zero(n,0); break;
             default:      break;
         }          break;
         case NZERO:    break;
         case PINF: switch (data_type_of(n)){
             case NINF:     invalid(n);     break;
             default:       inf(n,0);       break;
         }          break;
         case NINF: switch (data_type_of(n)){
             case PINF:     invalid(n);     break;
             default:       inf(n,1);       break;
         }          break;
     }
}

FADD Special Cases
FRm,DRm FRn,DRn

NORM +0 �0 +INF �INF qNaN sNaN
NORM ADD �INF

+0 +0
�0 �0

+INF +INF Invalid
�INF �INF Invalid �INF
qNaN qNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 279 of 484
REJ09B0051-0300

Possible Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 280 of 484
REJ09B0051-0300

6.5.3 FCMP Floating-point CoMPare Floating-Point Instruction
Floating-Point
Comparison

No. PR Format Abstract Code Cycle T Bit
1. 0 FCMP/EQ FRm,FRn (FRn==FRm)?1:0 → T 1111nnnnmmmm0100 1 1/0
2. 1 FCMP/EQ DRm,DRn (DRn==DRm)?1:0 → T 1111nnn0mmm00100 2 1/0
3. 0 FCMP/GT FRm,FRn (FRn>FRm)?1:0 → T 1111nnnnmmmm0101 1 1/0
4. 1 FCMP/GT DRm,DRn (DRn>DRm)?1:0 → T 1111nnn0mmm00101 2 1/0

Description

1. When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbers in FRn and FRm, and stores 1 in the T bit if they are equal, or 0 otherwise.

2. When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbers in DRn and DRm, and stores 1 in the T bit if they are equal, or 0 otherwise.

3. When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbers in FRn and FRm, and stores 1 in the T bit if FRn > FRm, or 0 otherwise.

4. When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbers in DRn and DRm, and stores 1 in the T bit if DRn > DRm, or 0 otherwise.

Operation
void FCMP_EQ(int m,n) /* FCMP/EQ  FRm,FRn */
{
     pc += 2;
     clear_cause();
     if(fcmp_chk (m,n) == INVALID) fcmp_invalid();
     else if(fcmp_chk (m,n) == EQ)  T = 1;
     else                           T = 0;
}
void FCMP_GT(int m,n) /* FCMP/GT  FRm,FRn */
{
     pc += 2;
     clear_cause();
     if ((fcmp_chk (m,n) == INVALID) ||
          (fcmp_chk (m,n) == UO)) fcmp_invalid();



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 281 of 484
REJ09B0051-0300

     else if(fcmp_chk (m,n) == GT)  T = 1;
     else                           T = 0;
}
int fcmp_chk (int m,n)
{
     if((data_type_of(m) == sNaN) ||
        (data_type_of(n) == sNaN))        return(INVALID);
     else if((data_type_of(m) == qNaN) ||
               (data_type_of(n) == qNaN))      return(UO);
     else switch(data_type_of(m)){
           case NORM:     switch(data_type_of(n)){
                 case PINF   :return(GT);  break;
                 case NINF   :return(LT);  break;
                 default:                   break;
                 }      break;
           case PZERO:
           case NZERO:    switch(data_type_of(n)){
                 case PZERO  :
                 case NZERO  :return(EQ);  break;
                 default:                   break;
                 }      break;
           case PINF :    switch(data_type_of(n)){
                 case PINF   :return(EQ);  break;
                 default:return(LT);       break;
                 }      break;
           case NINF :    switch(data_type_of(n)){
                 case NINF   :return(EQ);  break;
                 default:return(GT);       break;
                 }      break;
     }
     if(FPSCR_PR == 0) {
         if(FR[n] == FR[m])           return(EQ);
         else if(FR[n] > FR[m])       return(GT);
         else                         return(LT);
     }else {



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 282 of 484
REJ09B0051-0300

         if(DR[n>>1] == DR[m>>1])     return(EQ);
         else if(DR[n>>1] > DR[m>>1]) return(GT);
         else                         return(LT);
     }
}
void fcmp_invalid()
{
     set_V();     T = 0;
                  if((FPSCR & ENABLE_V)==1) fpu_exception_trap();
}

FCMP Special Cases
FCMP/EQ FRn,DRn
FRm,DRm NORM +0 �0 +INF �INF qNaN sNaN

NORM CMP
+0 EQ
�0

+INF EQ
�INF EQ
qNaN !EQ
sNaN Invalid

Note: The value of a denormalized number is treated as 0.

FCMP/GT FRn,DRn
FRm,DRm NORM +0 �0 +INF �INF qNaN sNaN

NORM CMP GT !GT
+0 !GT
�0

+INF !GT !GT
�INF GT !GT
qNaN UO
sNaN Invalid

Note: The value of a denormalized number is treated as 0.
UO means unordered. Unordered is treated as false (!GT).



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 283 of 484
REJ09B0051-0300

Possible Exceptions:

Invalid operation



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 284 of 484
REJ09B0051-0300

6.5.4 FCNVDS Floating-point CoNVert
Double to Single precision Floating-Point Instruction

Double-Precision
to Single-Precision
Conversion

PR Format Abstract Code Cycle T Bit
0 � � � � �
1 FCNVDS DRm,FPUL (float)DRm → FPUL 1111mmm010111101 2 �

Description

When FPSCR.PR = 1, this instruction converts the double-precision floating-point number in
DRm to a single-precision floating-point number, and stores the result in FPUL.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FPUL is not updated. Appropriate processing should therefore
be performed by software.

If FPSCR.PR = 0, the instruction is handled as an illegal instruction.

Operation
void FCNVDS(int m, float *FPUL){
     case((FPSCR.PR){
          0:  undefined_operation();   /* reserved */
          1:  fcnvds(m, *FPUL);  break;  /* FCNVDS */
     }
}
void fcnvds(int m, float *FPUL)
{
     pc += 2;
     clear_cause();
     case(data_type_of(m, *FPUL)){
          NORM  :
          PZERO :
          NZERO :    normal_ fcnvds(m, *FPUL);  break;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 285 of 484
REJ09B0051-0300

          PINF  :    *FPUL = 0x7f800000; break;
          NINF  :    *FPUL = 0xff800000; break;
          qNaN  :    *FPUL = 0x7fbfffff; break;
          sNaN  :     set_V();
                        if((FPSCR & ENABLE_V) == 0) *FPUL = 0x7fbfffff;
                        else fpu_exception_trap();   break;
     }
}
void normal_fcnvds(int m, float *FPUL)
{
int sign;
float abs;
union {
      float f;
      int l;
}     dstf,tmpf;
union {
      double d;
      int l[2];
}     dstd;
      dstd.d = DR[m>>1];
      if(dstd.l[1] & 0x1fffffff)) set_I();
      if(FPSCR_RM == 1) dstd.l[1] &= 0xe0000000; /* round toward zero*/
      dstf.f = dstd.d;
      check_single_exception(FPUL, dstf.f);
}

FCNVDS Special Cases
FRn +NORM �NORM +0 �0 +INF �INF qNaN sNaN

FCNVDS(FRn FPUL) FCNVDS FCNVDS +0 �0 +INF �INF qNaN Invalid
Note: The value of a denormalized number is treated as 0.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 286 of 484
REJ09B0051-0300

Possible Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 287 of 484
REJ09B0051-0300

6.5.5 FCNVSD Floating-point CoNVert
Single to Double precision Floating-Point Instruction

Single-Precision
to Double-Precision
Conversion

PR Format Abstract Code Cycle T Bit
0 � � � � �
1 FCNVSD FPUL, DRn (double) FPUL → DRn 1111nnn010101101 2 �

Description

When FPSCR.PR = 1, this instruction converts the single-precision floating-point number in
FPUL to a double-precision floating-point number, and stores the result in DRn.

If FPSCR.PR = 0, the instruction is handled as an illegal instruction.

Operation
void FCNVSD(int n, float *FPUL){
     pc += 2;
     clear_cause();
     case((FPSCR_PR){
          0:  undefined_operation();    /* reserved */
          1:  fcnvsd (n, *FPUL);  break;  /* FCNVSD */
     }
}
void fcnvsd(int n, float *FPUL)
{
     case(fpul_type(FPUL)){
          PZERO :
          NZERO :
          PINF  :
          NINF  : DR[n>>1] = *FPUL; break;
          qNaN  : qnan(n); break;
          sNaN  : invalid(n); break;
     }



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 288 of 484
REJ09B0051-0300

}
int fpul_type(int *FPUL)
{
int abs;
     abs = *FPUL & 0x7fffffff;
     if(abs < 0x00800000){
         if((FPSCR_DN == 1) || (abs == 0x00000000)){
             if(sign_of(src) == 0) return(PZERO);
             else                  return(NZERO);
         }
         else                      return(DENORM);
     }
     else if(abs < 0x7f800000) return(NORM);
     else if(abs == 0x7f800000) {
             if(sign_of(src) == 0) return(PINF);
             else               return(NINF);
     }
     else if(abs < 0x7fc00000)  return(qNaN);
     else                       return(sNaN);
}

FCNVSD Special Cases
FRn +NORM �NORM +0 �0 +INF �INF qNaN sNaN

FCNVSD(FPUL FRn) +NORM �NORM +0 �0 +INF �INF qNaN Invalid
Note: The value of a denormalized number is treated as 0.

Possible Exceptions:

• Invalid operation



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 289 of 484
REJ09B0051-0300

6.5.6 FDIV Floating-point DIVide Floating-Point Instruction
Floating-Point
Division

PR Format Abstract Code Cycle T Bit
0 FDIV   FRm,FRn FRn/FRm → FRn 1111nnnnmmmm0011 10 �
1 FDIV   DRm,DRn DRn/DRm → DRn 1111nnn0mmm00011 23 �

Description

When FPSCR.PR = 0: Arithmetically divides the single-precision floating-point number in FRn by
the single-precision floating-point number in FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically divides the double-precision floating-point number in DRn
by the double-precision floating-point number in DRm, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation
void FDIV(int m,n)     /* FDIV FRm,FRn */
{
     pc += 2;
     clear_cause();
     if((data_type_of(m) == sNaN) ||
        (data_type_of(n) == sNaN)) invalid(n);
     else if((data_type_of(m) == qNaN) ||
             (data_type_of(n) == qNaN)) qnan(n);
     else switch (data_type_of(m)){
         case NORM: switch (data_type_of(n)){
             case PINF:
             case NINF:    inf(n,sign_of(m)^sign_of(n));break;
             case PZERO:
             case NZERO:   zero(n,sign_of(m)^sign_of(n));break;
             default:    normal_fdiv(m,n);  break;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 290 of 484
REJ09B0051-0300

             }    break;
         case PZERO: switch (data_type_of(n)){
             case PZERO:
             case NZERO: invalid(n);break;
             case PINF:
             case NINF:  break;
             default:      dz(n,sign_of(m)^sign_of(n));break;
                }     break;
         case NZERO: switch (data_type_of(n)){
             case PZERO:
             case NZERO:  invalid(n);  break;
             case PINF:   inf(n,1);    break;
             case NINF:   inf(n,0);    break;
             default:     dz(FR[n],sign_of(m)^sign_of(n)); break;
             }     break;
         case PINF :
         case NINF : switch (data_type_of(n)){
             case PINF:
             case NINF: invalid(n);     break;
             default:   zero(n,sign_of(m)^sign_of(n));break
             }    break;
         }
}
void normal_fdiv(int m,n)
{
union {
      float f;
      int l;
}     dstf,tmpf;
union {
      double d;
      int l[2];
}     dstd,tmpd;
union {
      int double x;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 291 of 484
REJ09B0051-0300

      int l[4];
}     tmpx;
     if(FPSCR_PR == 0) {
         tmpf.f = FR[n]; /* save destination value */
         dstf.f /= FR[m]; /* round toward nearest or even */
         tmpd.d = dstf.f; /* convert single to double */
         tmpd.d *= FR[m];
         if(tmpf.f != tmpd.d) set_I();
         if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))
             dstf.l -= 1; /* round toward zero */
          check_single_exception(&FR[n], dstf.f);
     } else {
         tmpd.d = DR[n>>1]; /* save destination value */
         dstd.d /= DR[m>>1]; /* round toward nearest or even */
         tmpx.x = dstd.d; /* convert double to int double */
         tmpx.x *= DR[m>>1];
         if(tmpd.d != tmpx.x) set_I();
         if((tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {
             dstd.l[1] -= 1; /* round toward zero */
             if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;
         }
         check_double_exception(&DR[n>>1], dstd.d);
     }
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 292 of 484
REJ09B0051-0300

FDIV Special Cases
FRm,DRm FRn,DRn

NORM +0 �0 +INF �INF qNaN sNaN
NORM DIV 0 INF

+0 DZ Invalid +INF �INF
�0 �INF +INF

+INF 0 +0 �0 Invalid
�INF �0 +0
qNaN qNaN
sNaN Invalid

Note: The value of a denormalized number is treated as 0.

Possible Exceptions:

• Invalid operation
• Divide by zero
• Overflow
• Underflow
• Inexact



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 293 of 484
REJ09B0051-0300

6.5.7 FLDI0 Floating-point
LoaD Immediate 0.0 Floating-Point Instruction

0.0 Load

PR Format Abstract Code Cycle T Bit
0 FLDI0   FRn 0x00000000 → FRn 1111nnnn10001101 1 �
1 � � � � �

Description

When FPSCR.PR = 0, this instruction loads floating-point 0.0 (0x00000000) into FRn.

If FPSCR.PR = 1, the instruction is handled as an illegal instruction.

Operation
void FLDI0(int n)
{
     FR[n] = 0x00000000;
     pc += 2;
}

Possible Exceptions:

None



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 294 of 484
REJ09B0051-0300

6.5.8 FLDI1 Floating-point LoaD
Immediate 1.0 Floating-Point Instruction

1.0 Load

Format Abstract Code Cycle T Bit
FLDI1   FRn 0x3F800000 → FRn 1111nnnn10011101 1 �
� � � � �

Description

When FPSCR.PR = 0, this instruction loads floating-point 1.0 (0x3F800000) into FRn.

If FPCSR.PR = 1, the instruction is handled as an illegal instruction.

Operation
void FLDI1(int n)
{
     FR[n] = 0x3F800000;
     pc += 2;
}

Possible Exceptions:

None



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 295 of 484
REJ09B0051-0300

6.5.9 FLDS Floating-point
LoaD to System register Floating-Point Instruction

Transfer to System
Register

Format Abstract Code Cycle T Bit
FLDS FRm,FPUL FRm → FPUL 1111mmmm00011101 1 �

Description

This instruction loads the contents of floating-point register FRm into system register FPUL.

Operation
void FLDS(int m, float *FPUL)
{
     *FPUL = FR[m];
     pc += 2;
}

Possible Exceptions:

None



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 296 of 484
REJ09B0051-0300

6.5.10 FLOAT Floating-point
convert from integer Floating-Point Instruction

Integer to Floating-Point
Conversion

PR Format Abstract Code Cycle T Bit
0 FLOAT FPUL,FRn (float)FPUL → FRn 1111nnnn00101101 1 �
1 FLOAT FPUL,DRn (double)FPUL → DRn 1111nnn000101101 2 �

Description

When FPSCR.PR = 0: Taking the contents of FPUL as a 32-bit integer, converts this integer to a
single-precision floating-point number and stores the result in FRn.

When FPSCR.PR = 1: Taking the contents of FPUL as a 32-bit integer, converts this integer to a
double-precision floating-point number and stores the result in DRn.

When FPSCR.enable.I = 1, and FPSCR.PR = 0, an FPU exception trap is generated regardless of
whether or not an exception has occurred. When an exception occurs, correct exception
information is reflected in FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated.
Appropriate processing should therefore be performed by software.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 297 of 484
REJ09B0051-0300

Operation
void FLOAT(int n, float *FPUL)
{
union {
     double d;
     int l[2];
}    tmp;
     pc += 2;
     clear_cause();
     if(FPSCR.PR==0){
         FR[n] = *FPUL; /* convert from integer to float */
         tmp.d = *FPUL;
         if(tmp.l[1] & 0x1fffffff) inexact();
     } else {
         DR[n>>1] = *FPUL; /* convert from integer to double */
     }
}

Possible Exceptions:

Inexact: Not generated when FPSCR.PR = 1.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 298 of 484
REJ09B0051-0300

6.5.11 FMAC Floating-point Multiply
and ACcumulate Floating-Point Instruction

Floating-Point Multiply
and Accumulate

PR Format Abstract Code Cycle T Bit
0 FMAC FR0,FRm,FRn FR0*FRm+FRn → FRn 1111nnnnmmmm1110 1 �
1 � � � � �

Description

When FPSCR.PR = 0, this instruction arithmetically multiplies the two single-precision floating-
point numbers in FR0 and FRm, arithmetically adds the contents of FRn, and stores the result in
FRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn is not updated. Appropriate processing should therefore
be performed by software.

If FPSCR.PR = 1, the instruction is handled as an illegal instruction.

Operation
void FMAC(int m,n)
{
     pc += 2;
     clear_cause();
     if(FPSCR_PR == 1) undefined_operation();
     else if((data_type_of(0) == sNaN) ||
             (data_type_of(m) == sNaN) ||
             (data_type_of(n) == sNaN)) invalid(n);
     else if((data_type_of(0) == qNaN) ||
             (data_type_of(m) == qNaN)) qnan(n);
     else if((data_type_of(0) == DENORM) ||
             (data_type_of(m) == DENORM)) set_E();
     else switch (data_type_of(0){
         case NORM: switch (data_type_of(m)){



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 299 of 484
REJ09B0051-0300

         case PZERO:
         case NZERO: switch (data_type_of(n)){
             case qNaN:   qnan(n);  break;
             case PZERO:
             case NZERO: zero(n,sign_of(0)^ sign_of(m)^sign_of(n));
break;
             default:     break;
             }
     case PINF:
     case NINF: switch (data_type_of(n)){
         case qNaN:    qnan(n); break;
         case PINF:
         case NINF: if(sign_of(0)^ sign_of(m)^sign_of(n))  invalid(n);
                    else   inf(n,sign_of(0)^ sign_of(m)); break;
         default:          inf(n,sign_of(0)^ sign_of(m)); break;
         }
     case NORM: switch (data_type_of(n)){
         case qNaN:   qnan(n);  break;
         case PINF:
         case NINF:   inf(n,sign_of(n)); break;
         case PZERO:
         case NZERO:
         case NORM:   normal_fmac(m,n);  break;
     }      break;
     case PZERO:
     case NZERO: switch (data_type_of(m)){
         case PINF:
         case NINF:  invalid(n); break;
         case PZERO:
         case NZERO:
         case NORM: switch (data_type_of(n)){
         case qNaN:   qnan(n);    break;
         case PZERO:
         case NZERO: zero(n,sign_of(0)^ sign_of(m)^sign_of(n));  break;
         default:    break;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 300 of 484
REJ09B0051-0300

         }         break;
     }      break;
     case PINF :
     case NINF : switch (data_type_of(m)){
         case PZERO:
         case NZERO: invalid(n);  break;
         default: switch (data_type_of(n)){
          case qNaN:    qnan(n);  break;
             default:   inf(n,sign_of(0)^sign_of(m)^sign_of(n));break
             }      break;
         }       break;
     }
}
void normal_fmac(int m,n)
{
union {
      int double x;
      int l[4];
}     dstx,tmpx;
float dstf,srcf;
      if((data_type_of(n) == PZERO)|| (data_type_of(n) == NZERO))
             srcf = 0.0; /* flush denormalized value */
      else    srcf = FR[n];
      tmpx.x = FR[0]; /* convert single to int double */
      tmpx.x *= FR[m]; /* exact product */
      dstx.x = tmpx.x + srcf;
      if(((dstx.x == srcf) && (tmpx.x != 0.0)) ||
         ((dstx.x == tmpx.x) && (srcf != 0.0))) {
         set_I();
         if(sign_of(0)^ sign_of(m)^ sign_of(n))  {
             dstx.l[3] -= 1; /* correct result */
             if(dstx.l[3] == 0xffffffff) dstx.l[2] -= 1;
             if(dstx.l[2] == 0xffffffff) dstx.l[1] -= 1;
             if(dstx.l[1] == 0xffffffff) dstx.l[0] -= 1;
         }



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 301 of 484
REJ09B0051-0300

         else   dstx.l[3] |= 1;
      }
      if((dstx.l[1] & 0x01ffffff) || dstx.l[2] || dstx.l[3]) set_I();
      if(FPSCR_RM == 1) {
             dstx.l[1] &= 0xfe000000; /* round toward zero */
             dstx.l[2]  = 0x00000000;
             dstx.l[3]  = 0x00000000;
      }
      dstf = dstx.x;
      check_single_exception(&FR[n],dstf);
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 302 of 484
REJ09B0051-0300

FMAC Special Cases
FRn FR0 FRm

+Norm �Norm +0 �0 +INF �INF qNaN sNaN
Norm Norm MAC INF

0 Invalid
INF INF Invalid INF

+0 Norm MAC
0 +0 Invalid

INF INF Invalid INF
�0 +Norm MAC +0 �0 +INF �INF

�Norm �0 +0 �INF +INF
+0 +0 �0 +0 �0 Invalid
�0 �0 +0 �0 +0
INF INF Invalid INF

+INF +Norm +INF Invalid
�Norm +INF

0 Invalid
+INF Invalid +INF
�INF Invalid +INF +INF

�INF +Norm �INF �INF
�Norm

0
+INF Invalid Invalid �INF
�INF �INF �INF Invalid

qNaN 0 Invalid
INF Invalid

Norm
!sNaN qNaN qNaN

All types sNaN
SNaN all types Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 303 of 484
REJ09B0051-0300

Possible Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 304 of 484
REJ09B0051-0300

6.5.12 FMOV Floating-point MOVe Floating-Point Instruction
Floating-Point
Transfer

No. SZ Format Abstract Code Cycle T Bit
1. 0 FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 1 �
2. 1 FMOV DRm,DRn DRm → DRn 1111nnn0mmm01100 2 �
3. 0 FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 1 �
4. 1 FMOV.D DRm,@Rn DRm → (Rn) 1111nnnnmmm01010 2 �
5. 0 FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 1 �
6. 1 FMOV.D @Rm,DRn (Rm) → DRn 1111nnn0mmmm1000 2 �
7. 0 FMOV.S @Rm+,FRn (Rm) → FRn,Rm+=4 1111nnnnmmmm1001 1 �
8. 1 FMOV.D @Rm+,DRn (Rm) → DRn,Rm+=81111nnn0mmmm1001 2 �
9. 0 FMOV.S FRm,@-Rn Rn-=4,FRm → (Rn) 1111nnnnmmmm1011 1 �
10. 1 FMOV.D DRm,@-Rn Rn-=8,DRm → (Rn) 1111nnnnmmm01011 2 �
11. 0 FMOV.S @(R0,Rm),FRn (R0+Rm) → FRn 1111nnnnmmmm0110 1 �
12. 1 FMOV.D @(R0,Rm),DRn (R0+Rm) → DRn 1111nnn0mmmm0110 2 �
13. 0 FMOV.S FRm, @(R0,Rn) FRm → (R0+Rn) 1111nnnnmmmm0111 1 �
14. 1 FMOV.D DRm, @(R0,Rn) DRm → (R0+Rn) 1111nnnnmmm00111 2 �

Description

1. This instruction transfers FRm contents to FRn.
2. This instruction transfers DRm contents to DRn.
3. This instruction transfers FRm contents to memory at address indicated by Rn.
4. This instruction transfers DRm contents to memory at address indicated by Rn.
5. This instruction transfers contents of memory at address indicated by Rm to FRn.
6. This instruction transfers contents of memory at address indicated by Rm to DRn.
7. This instruction transfers contents of memory at address indicated by Rm to FRn, and adds 4 to

Rm.
8. This instruction transfers contents of memory at address indicated by Rm to DRn, and adds 8

to Rm.
9. This instruction subtracts 4 from Rn, and transfers FRm contents to memory at address

indicated by resulting Rn value.
10. This instruction subtracts 8 from Rn, and transfers DRm contents to memory at address

indicated by resulting Rn value.



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 305 of 484
REJ09B0051-0300

11. This instruction transfers contents of memory at address indicated by (R0 + Rm) to FRn.
12. This instruction transfers contents of memory at address indicated by (R0 + Rm) to DRn.
13. This instruction transfers FRm contents to memory at address indicated by (R0 + Rn).
14. This instruction transfers DRm contents to memory at address indicated by (R0 + Rn).

Operation
void FMOV(int m,n)                 /* FMOV FRm,FRn */
{
     FR[n] = FR[m];
     pc += 2;
}
void FMOV_DR(int m,n)           /* FMOV DRm,DRn */
{
     DR[n>>1] = DR[m>>1];
     pc += 2;
}
void FMOV_STORE(int m,n)       /* FMOV.S FRm,@Rn */
{
     store_int(FR[m],R[n]);
     pc += 2;
}
void FMOV_STORE_DR(int m,n)   /* FMOV.D DRm,@Rn */
{
     store_quad(DR[m>>1],R[n]);
     pc += 2;
}
 void FMOV_LOAD(int m,n)       /* FMOV.S @Rm,FRn */
{
     load_int(R[m],FR[n]);
     pc += 2;
}
void FMOV_LOAD_DR(int m,n)    /* FMOV.D @Rm,DRn */
{
     load_quad(R[m],DR[n>>1]);
     pc += 2;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 306 of 484
REJ09B0051-0300

}
void FMOV_RESTORE(int m,n)     /* FMOV.S @Rm+,FRn */
{
     load_int(R[m],FR[n]);
     R[m] += 4;
     pc += 2;
}
void FMOV_RESTORE_DR(int m,n) /* FMOV.D @Rm+,DRn */
{
     load_quad(R[m],DR[n>>1]) ;
     R[m] += 8;
     pc += 2;
}
void FMOV_SAVE(int m,n)        /* FMOV.S FRm,@�Rn */
{
     store_int(FR[m],R[n]-4);
     R[n] -= 4;
     pc += 2;
}
void FMOV_SAVE_DR(int m,n)    /* FMOV.D DRm,@�Rn */
{
     store_quad(DR[m>>1],R[n]-8);
     R[n] -= 8;
     pc += 2;
}
void FMOV_INDEX_LOAD(int m,n)  /* FMOV.S @(R0,Rm),FRn */
{
     load_int(R[0] + R[m],FR[n]);
     pc += 2;
}
void FMOV_INDEX_LOAD_DR(int m,n) /*FMOV.D @(R0,Rm),DRn */
{
     load_quad(R[0] + R[m],DR[n>>1]);
     pc += 2;
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 307 of 484
REJ09B0051-0300

void FMOV_INDEX_STORE(int m,n)  /*FMOV.S FRm,@(R0,Rn)*/
{
     store_int(FR[m], R[0] + R[n]);
     pc += 2;
}
void FMOV_INDEX_STORE_DR(int m,n)/*FMOV.D DRm,@(R0,Rn)*/
{
     store_quad(DR[m>>1], R[0] + R[n]);
     pc += 2;
}

Possible Exceptions:

• Address error



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 308 of 484
REJ09B0051-0300

6.5.13 FMUL Floating-point MULtiply Floating-Point Instruction
Floating-Point
Multiplication

PR Format Abstract Code Cycle T Bit
0 FMUL FRm,FRn FRn*FRm → FRn 1111nnnnmmmm0010 1 �
1 FMUL DRm,DRn DRn*DRm → DRn 1111nnn0mmm00010 6 �

Description

When FPSCR.PR = 0: Arithmetically multiplies the two single-precision floating-point numbers
in FRn and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically multiplies the two double-precision floating-point numbers
in DRn and DRm, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation
void FMUL(int m,n)
{
     pc += 2;
         clear_cause();
         if((data_type_of(m) == sNaN) ||
             (data_type_of(n) == sNaN)) invalid(n);
         else if((data_type_of(m) == qNaN) ||
                 (data_type_of(n) == qNaN)) qnan(n);
         else switch (data_type_of(m){
             case NORM: switch (data_type_of(n)){
                 case PZERO:
                 case NZERO: zero(n,sign_of(m)^sign_of(n));  break;
                 case PINF:
                 case NINF:      inf(n,sign_of(m)^sign_of(n));  break;
                 default:        normal_fmul(m,n);  break;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 309 of 484
REJ09B0051-0300

      }      break;
         case PZERO:
         case NZERO: switch (data_type_of(n)){
             case PINF:
             case NINF:  invalid(n); break;
             default:    zero(n,sign_of(m)^sign_of(n));break;
      }      break;
          case PINF :
          case NINF : switch (data_type_of(n)){
              case PZERO:
              case NZERO: invalid(n);   break;
              default:       inf(n,sign_of(m)^sign_of(n));break
      }       break;
      }
}

FMUL Special Cases
FRm,DRm FRn,DRn

NORM +0 �0 +INF �INF qNaN sNaN
NORM MUL 0 INF

+0 0 +0 �0 Invalid
�0 �0 +0

+INF INF Invalid +INF �INF
�INF �INF +INF
qNaN qNaN
sNaN Invalid

Note: The value of a denormalized number is treated as 0.

Possible Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 310 of 484
REJ09B0051-0300

6.5.14 FNEG Floating-point NEGate value Floating-Point Instruction
Floating-Point
Sign Inversion

PR Format Abstract Code Cycle T Bit
0 FNEG FRn -FRn → FRn 1111nnnn01001101 1 �
1 FNEG DRn -DRn → DRn 1111nnn001001101 1 �

Description

This instruction inverts the most significant bit (sign bit) of the contents of floating-point register
FRn/DRn, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.

Operation
void FNEG (int n){
     FR[n] = -FR[n];
     pc += 2;
}

/* Same operation is performed regardless of precision. */

Possible Exceptions:

None



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 311 of 484
REJ09B0051-0300

6.5.15 FSCHG Sz-bit CHanGe Floating-Point Instruction
SZ Bit
Inversion

PR Format Abstract Code Cycle T Bit
0 FSCHG FPSCR.SZ=~FPSCR.SZ 1111001111111101 1 �
1 � � � � �

Description

When FPSCR.PR = 0, this instruction inverts the SZ bit in floating-point register FPSCR.
Changing the SZ bit in FPSCR switches FMOV instruction data transfer between one single-
precision data unit and a data pair. When FPSCR.SZ = 0, the FMOV instruction transfers one
single-precision data unit. When FPSCR.SZ = 1, the FMOV instruction transfers two single-
precision data units as a pair.

If FPSCR.PR = 1, the instruction is handled as an illegal instruction.

Operation
void FSCHG()   /* FSCHG */
{
     if(FPSCR_PR == 0){
         FPSCR ^= 0x00100000; /* bit 20 */
         PC += 2;
     }
     else undefined_operation();
}

Possible Exceptions:

None



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 312 of 484
REJ09B0051-0300

6.5.16 FSQRT Floating-point SQuare RooT Floating-Point Instruction
Floating-Point
Square Root

PR Format Abstract Code Cycle T Bit
0 FSQRT FRn   FRn → FRn 1111nnnn01101101 9 �

1 FSQRT DRn  DRn → DRn 1111nnnn01101101 22 �

Description

When FPSCR.PR = 0: Finds the arithmetical square root of the single-precision floating-point
number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Finds the arithmetical square root of the double-precision floating-point
number in DRn, and stores the result in DRn.

When FPSCR.enable.I is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation
void FSQRT(int n){
     pc += 2;
     clear_cause();
     switch(data_type_of(n)){
         case NORM  :   if(sign_of(n) == 0) normal_ fsqrt(n);
                   else      invalid(n); break;
         case PZERO :
         case NZERO :
         case PINF  :     break;
         case NINF  :     invalid(n); break;
         case qNaN  :     qnan(n);    break;
         case sNaN  :     invalid(n); break;
     }
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 313 of 484
REJ09B0051-0300

void normal_fsqrt(int n)
{
union {
      float f;
      int l;
}     dstf,tmpf;
union {
      double d;
      int l[2];
}     dstd,tmpd;
union {
      int double x;
      int l[4];
}     tmpx;
      if(FPSCR_PR == 0) {
         tmpf.f = FR[n]; /* save destination value */
         dstf.f = sqrt(FR[n]); /* round toward nearest or even */
         tmpd.d = dstf.f; /* convert single to double */
         tmpd.d *= dstf.f;
         if(tmpf.f != tmpd.d) set_I();
         if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))
             dstf.l -= 1; /* round toward zero */
         if(FPSCR & ENABLE_I) fpu_exception_trap();
         else                    FR[n] = dstf.f;
      } else {
         tmpd.d = DR[n>>1]; /* save destination value */
         dstd.d = sqrt(DR[n>>1]); /* round toward nearest or even */
         tmpx.x = dstd.d; /* convert double to int double */
         tmpx.x *= dstd.d;
         if(tmpd.d != tmpx.x) set_I();
         if((tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {
             dstd.l[1] -= 1; /* round toward zero */
             if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;
         }



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 314 of 484
REJ09B0051-0300

         if(FPSCR & ENABLE_I) fpu_exception_trap();
         else                    DR[n>>1] = dstd.d;
      }
}

FSQRT Special Cases
FRn +NORM �NORM +0 �0 +INF �INF qNaN sNaN

FSQRT(FRn) SQRT Invalid +0 �0 +INF Invalid qNaN Invalid
Note: The value of a denormalized number is treated as 0.

Possible Exceptions:

• Invalid operation
• Inexact



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 315 of 484
REJ09B0051-0300

6.5.17 FSTS Floating-point STore
System register Floating-Point Instruction

Transfer from
System Register

Format Abstract Code Cycle T Bit
FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 1 �

Description

This instruction transfers the contents of system register FPUL to floating-point register FRn.

Operation
void FSTS(int n, float *FPUL)
{
     FR[n] = *FPUL;
     pc += 2;
}

Possible Exceptions:

None



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 316 of 484
REJ09B0051-0300

6.5.18 FSUB Floating-point
SUBtract Floating-Point Instruction

Floating-Point
Subtraction

PR Format Abstract Code Cycle T Bit
0 FSUB   FRm,FRn FRn-FRm → FRn 1111nnnnmmmm0001 1 �
1 FSUB   DRm,DRn DRn-DRm → DRn 1111nnn0mmm00001 6

Description

When FPSCR.PR = 0: Arithmetically subtracts the single-precision floating-point number in FRm
from the single-precision floating-point number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically subtracts the double-precision floating-point number in
DRm from the double-precision floating-point number in DRn, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation
void FSUB (int m,n)
{
     pc += 2;
     clear_cause();
     if((data_type_of(m) == sNaN) ||
         (data_type_of(n) == sNaN)) invalid(n);
     else if((data_type_of(m) == qNaN) ||
             (data_type_of(n) == qNaN)) qnan(n);
     else switch (data_type_of(m)){
         case NORM: switch (data_type_of(n)){
             case NORM:  normal_faddsub(m,n,SUB); break;
             case PZERO:
             case NZERO: register_copy(m,n); FR[n] = -FR[n];break;
             default:       break;



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 317 of 484
REJ09B0051-0300

         }           break;
         case PZERO: break;
         case NZERO: switch (data_type_of(n)){
             case NZERO: zero(n,0); break;
             default:       break;
         }          break;
         case PINF: switch (data_type_of(n)){
             case PINF:    invalid(n);     break;
             default:      inf(n,1);       break;
         }    break;
         case NINF: switch (data_type_of(n)){
             case NINF:    invalid(n);     break;
             default:      inf(n,0);       break;
         }          break;
     }
}

FSUB Special Cases
FRm,DRm FRn,DRn

NORM +0 �0 +INF �INF qNaN sNaN
NORM SUB +INF �INF

+0 �0
�0 +0

+INF �INF Invalid
�INF +INF Invalid
qNaN qNaN
sNaN Invalid

Note: The value of a denormalized number is treated as 0.

Possible Exceptions:

• Invalid operation
• Overflow
• Underflow
• Inexact



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 318 of 484
REJ09B0051-0300

6.5.19 FTRC Floating-point TRuncate
and Convert to integer Floating-Point Instruction

Conversion
to Integer

PR Format Abstract Code Cycle T Bit
0 FTRC  FRm,FPUL (long)FRm → FPUL 1111mmmm00111101 1 �
1 FTRC  DRm,FPUL (long)DRm → FPUL 1111mmm000111101 2 �

Description

When FPSCR.PR = 0: Converts the single-precision floating-point number in FRm to a 32-bit
integer, and stores the result in FPUL.

When FPSCR.PR = 1: Converts the double-precision floating-point number in FRm to a 32-bit
integer, and stores the result in FPUL.

The rounding mode is always truncation.

Operation
#define N_INT_SINGLE_RANGE 0xcf000000 & 0x7fffffff  /* -1.000000 * 2^31 */
#define P_INT_SINGLE_RANGE 0x4effffff  /* 1.fffffe * 2^30 */
#define N_INT_DOUBLE_RANGE 0xc1e0000000200000 & 0x7fffffffffffffff
#define P_INT_DOUBLE_RANGE 0x41e0000000000000

void FTRC(int m, int *FPUL)
{
     pc += 2;
     clear_cause();
     if(FPSCR.PR==0){
          case(ftrc_single_ type_of(m)){
          NORM:     *FPUL = FR[m];   break;
          PINF:     ftrc_invalid(0); break;
          NINF:     ftrc_invalid(1); break;
          }
     }
     else{                  /* case FPSCR.PR=1 */



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 319 of 484
REJ09B0051-0300

          case(ftrc_double_type_of(m)){
          NORM:     *FPUL = DR[m>>1]; break;
          PINF:     ftrc_invalid(0); break;
          NINF:     ftrc_invalid(1); break;
          }
     }
}
int ftrc_signle_type_of(int m)
{
     if(sign_of(m) == 0){
         if(FR_HEX[m] > 0x7f800000)    return(NINF);    /* NaN */
         else if(FR_HEX[m] > P_INT_SINGLE_RANGE)
                    return(PINF);    /* out of range,+INF */
         else       return(NORM);    /* +0,+NORM          */
     } else {
         if((FR_HEX[m] & 0x7fffffff) > N_INT_SINGLE_RANGE)
                    return(NINF);  /* out of range ,+INF,NaN*/
         else       return(NORM);   /* -0,-NORM              */
     }
}
int ftrc_double_type_of(int m)
{
     if(sign_of(m) == 0){
         if((FR_HEX[m] > 0x7ff00000) ||
           ((FR_HEX[m] == 0x7ff00000) &&
            (FR_HEX[m+1] != 0x00000000)))   return(NINF);     /* NaN */
         else if(DR_HEX[m>>1] >= P_INT_DOUBLE_RANGE)
                    return(PINF);    /* out of range,+INF */
         else       return(NORM);    /* +0,+NORM          */
     } else {
         if((DR_HEX[m>>1] & 0x7fffffffffffffff) >= N_INT_DOUBLE_RANGE)
                    return(NINF);    /* out of range ,+INF,NaN*/
         else       return(NORM);    /* -0,-NORM              */
     }
}



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 320 of 484
REJ09B0051-0300

void ftrc_invalid(int sign, int *FPUL)
{
     set_V();
      if((FPSCR & ENABLE_V) == 0){
            if(sign == 0)     *FPUL = 0x7fffffff;
            else              *FPUL = 0x80000000;
     }
     else fpu_exception_trap();
}

FTRC Special Cases

FRn,DRn NORM +0 �0

Positive
Out of
Range

Negative
Out of
Range +INF �INF qNaN sNaN

FTRC
(FRn,DRn)

TRC 0 0 Invalid
+MAX

Invalid
�MAX

Invalid
+MAX

Invalid
�MAX

Invalid
�MAX

Invalid
�MAX

Note: The value of a denormalized number is treated as 0.

Possible Exceptions:

• Invalid operation



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 321 of 484
REJ09B0051-0300

6.5.20 LDS LoaD to FPU System
register System Control Instruction

Load to FPU
System Register

Format Abstract Code Cycle T Bit
LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 1 �
LDS.L @Rm+,FPUL (Rm) → FPUL, Rm+4 → Rm 0100mmmm01010110 1 �
LDS Rm,FPSCR Rm → FPSCR 0100mmmm01101010 1 �
LDS.L @Rm+,FPSCR (Rm) → FPSCR, Rm+4 → Rm 0100mmmm01100110 1 �

Description

This instruction loads the source operand into FPU system registers FPUL and FPSCR.

Operation
#define FPSCR_MASK 0x003FFFFF

LDSFPUL(int m, int *FPUL)        /* LDS Rm,FPUL  */
{
     *FPUL=R[m];
     PC+=2;
}
LDSMFPUL(int m, int *FPUL)        /* LDS.L @Rm+,FPUL  */
{
     *FPUL=Read_Long(R[m]);
     R[m]+=4;
     PC+=2;
}
LDSFPSCR(int  m)        /* LDS Rm,FPSCR  */
{
     FPSCR=R[m] & FPSCR_MASK;
     PC+=2;
}
LDSMFPSCR(int  m)        /* LDS.L @Rm+,FPSCR  */
{



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 322 of 484
REJ09B0051-0300

     FPSCR=Read_Long(R[m]) & FPSCR_MASK;
     R[m]+=4;
     PC+=2;
}

Possible Exceptions:

• Address error



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 323 of 484
REJ09B0051-0300

6.5.21 STS STore from FPU
System register System Control Instruction

Store from FPU
System Register

Format Abstract Code Cycle T Bit
STS FPUL,Rn FPUL → Rn 0000nnnn01011010 1 �
STS FPSCR,Rn FPSCR → Rn 0000nnnn01101010 1 �
STS.L FPUL,@-Rn Rn-4 → Rn, FPUL → (Rn) 0100nnnn01010010 1 �
STS.L FPSCR,@-Rn Rn-4 → Rn, FPSCR → (Rn) 0100nnnn01100010 1 �

Description

This instruction stores FPU system register FPUL or FPSCR in the destination.

Operation
STS(int n, int *FPUL)           /* STS FPUL,Rn  */
{
     R[n]= *FPUL;
     PC+=2;
}
STS_SAVE(int n, int *FPUL)     /* STS.L FPUL,@-Rn  */
{
     R[n]-=4;
     Write_Long(R[n],*FPUL) ;
     PC+=2;
}
STS(int  n)          /* STS FPSCR,Rn  */
{
     R[n]=FPSCR&0x003FFFFF;
     PC+=2;
}
STS_RESTORE(int  n)  /* STS.L FPSCR,@-Rn  */
{
     R[n]-=4;
     Write_Long(R[n],FPSCR&0x003FFFFF)



Section 6   Instruction Descriptions

Rev. 3.00  Jul 08, 2005  page 324 of 484
REJ09B0051-0300

     PC+=2;
}

Possible Exceptions:

• Address error

Examples

• STS
Example 1:
MOV.L #H'12ABCDEF, R12
LDS R12, FPUL
STS FPUL, R13

; After executing the STS instruction:

; R13 = 12ABCDEF

Example 2:
STS FPSCR, R2

; After executing the STS instruction:

; The current content of FPSCR is stored in register R2

• STS.L
Example 1:
MOV.L #H'0C700148, R7
STS.L FPUL, @-R7

; Before executing the STS.L instruction:

; R7 = 0C700148

; After executing the STS.L instruction:

; R7 = 0C700144, and the content of FPUL is saved at memory

; location 0C700144.

Example 2:
MOV.L #H'0C700154, R8
STS.L FPSCR, @-R8

; After executing the STS.L instruction:

; The content of FPSCR is saved at memory location 0C700150.



Section 7   Register Banks

Rev. 3.00  Jul 08, 2005  page 325 of 484
REJ09B0051-0300

Section 7   Register Banks

7.1 Overview

The SH-2A/SH2A-FPU has on-chip register banks to provide high-speed register save and retrieve
performance during interrupt processing. The configuration of the register banks is shown in
figure 7.1.

R0General
registers

R1

R14

R15

SR

GBR

VBR

TBR

MACH

MACL

PR

PC

Control
registers

IBCRBank control register

Bank control registers (interrupt controller)

IBNRBank number register

System
registers

..
..

R0

R1

R14

GBR

MACH

MACL

PR

VTO

..
..

Register banksRegisters

Bank 0

Bank 1

Bank
N - 1Interrupt generated

(save)

RESBANK instruction
(retrieve)

VTO : Interrupt vector table 

 address offset

: Banked registerNotes:

.....

Figure 7.1   Overview of Register Bank Configuration



Section 7   Register Banks

Rev. 3.00  Jul 08, 2005  page 326 of 484
REJ09B0051-0300

7.2 Register Banks and Bank Control Registers

7.2.1 Banked Data

The contents of general registers R0 to R14, the global register (GBR), the multiply and
accumulate registers (MACH, MACL), the procedure register (PR), and the interrupt vector table
address offsets (VTO) are banked.

7.2.2 Register Banks

The number of register banks is N, numbered from bank 0 to bank N � 1 (maximum 512 banks).
Register banks are stacked in first in last out (FILO) sequence. Saves take place in order,
beginning from bank 0, and retrieves take place in the reverse order, beginning from the last bank
saved to. The number of banks, N, differs depending on the product. For details, refer to the
Register Banks section of the hardware manual for the product in question.

7.2.3 Bank Control Registers

(1)  Bank Control Register (IBCR) (16 bit, Initial value: H'0000)

This register is used to allow or prohibit the use of specific register banks, based on the interrupt
priority level or the interrupt source. The register specifications and initial values differ depending
on the product. For details, refer to the Interrupt Controller section of the hardware manual for the
product in question.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E15 E14 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 �

Bits 15 to 1: E15 to E1
The setting of these bits is used to allow or prohibit use of register banks based on interrupt
priority level (15 to 1).

Bits 15 to 1

E15 to E1 Description

0 Register bank use is prohibited.
1 Register bank use is allowed.

Bit 0: Reserved Bit
This bit is always read as 0 and only a value of 0 should be written to it.



Section 7   Register Banks

Rev. 3.00  Jul 08, 2005  page 327 of 484
REJ09B0051-0300

(2)  Bank Number Register (IBNR) (16 bit, Initial value: H'0000)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BE1 BE0 BOVE � � � � � � � � � BN3 BN2 BN1 BN0

The setting of the bank number register (IBNR) is used to allow or prohibit use of register banks
and to allow or prohibit register bank overflow exceptions. In addition, bits BN3 to BN0 indicate
the number of the next bank to be saved to. They are initialized to H'0000 by a power-on reset.

Bits 15 and 14: BE1, BE0
These bits specify whether register bank use is prohibited or allowed.

Bits 15, 14

BE1, BE0 Description
00 Use of the bank is prohibited for all interrupts. The setting of IBCR is ignored.

(Initial value)

01 Use of the bank is prohibited for all interrupts except NMI and UBC. The setting
of IBCR is ignored.

10 Reserved. (Do not attempt to set this bit.)

11 Use of the bank is as specified by IBCR.

Bit 13: BOVE
This bit specify whether register bank overflow exceptions are prohibited or allowed.

Bit 13

BOVE Description

0 Generation of register bank overflow exceptions is prohibited.
(Initial value)

1 Generation of register bank overflow exceptions is allowed.

Bits 12 to 4: Reserved Bits
These bits are always read as 0 and only a value of 0 should be written to them.

Bits 3 to 0: BN3 to BN0
These bits indicate the number of the next bank to be saved to. When an interrupt that uses a
register bank is received, it is saved to the bank specified by BN3 to BN0 and BN is incremented
by 1. Execution of a register bank retrieve instruction causes BN to be decremented by 1, after
which the data is retrieved from the register bank. These bits are read-only and cannot be
modified.



Section 7   Register Banks

Rev. 3.00  Jul 08, 2005  page 328 of 484
REJ09B0051-0300

7.3 Bank Save and Retrieve Operations

7.3.1 Save to Bank

Figure 7.2 illustrates the register bank save operations. The following operations are performed
when an interrupt for which register bank use is allowed by IBCR is received by the CPU.

(a) Assume that the IBNR bank number value, BN, is i before the interrupt is generated.
(b) The contents of registers R0 to R14, GBR, MACH, MACL, PR, and the interrupt vector

table address offset (VTO) are saved to the bank indicated by the BN, bank i.
(c) The BN value is incremented by 1.

Bank 1

Bank i
(a)

(c)

(b)

Bank i+1

BN

+1

Bank 0

GBR

R0 to R14

MACH

MACL

PR

VTO

..
..

Bank N-1

..
..

Register banks Registers

Figure 7.2   Bank Save Operations

Figure 7.3 illustrates the register bank save timing. Saving to the bank takes place between the
start of interrupt exception processing and the start of the fetch of the first instruction in the
exception service routine.



Section 7   Register Banks

Rev. 3.00  Jul 08, 2005  page 329 of 484
REJ09B0051-0300

F D E

F

F

D E

E M M M

2+m1+m2+m3

2 m1 m2 m3

(1)VTO,PR,GBR,MACL

(2)R12,R13,R14,MACH

(3)R8,R9,R10,R11

Save to bank (4)R4,R5,R6,R7

(5)R0,R1,R2,R3
Overrun fetch

Instruction (instruction replacing
                   interrupt exception
                   processing)

External interrupt

First instruction in interrupt service routine

m1: Vector address read

m2: SR save (stack)

m3: PC save (stack)

Figure 7.3   Bank Save Timing

7.3.2 Retrieve from Bank

The retrieve from bank instruction, RESBANK, is used to retrieve data stored in a bank. After
retrieving the data from the bank with the RESBANK instruction at the end of the interrupt service
routine, use the RTE instruction to return from exception processing.

7.3.3 Save and Retrieve Operations after Saving to All Banks

If, after data has been saved to all of the register banks, an interrupt for which register bank use is
allowed is received by the CPU, data is saved automatically to the stack instead of a register bank.
This is possible by masking the register bank overflow exception using the interrupt controller. If
a register bank overflow exception were generated it would not be possible to save to the stack.
For details, refer to the Interrupt Controller section of the hardware manual for the product in
question. The automatic save to and retrieve from stack operations are described below.

(1) Save to Stack

(a) When interrupt exception processing occurs, the status register (SR) and program counter
(PC) are saved on the stack.

(b) The contents of the banked registers (R0 to R14, GBR, MACH, MACL, and PR) are saved
to the stack. The order in which the contents of these registers are saved is MACL, MACH,
GBR, PR, R14, R13, � R1, R0.

(c) The register bank overflow bit in SR is set to 1.
(d) The bank number (BN) bits in the bank number register (IBNR) remain set to the

maximum value, N.



Section 7   Register Banks

Rev. 3.00  Jul 08, 2005  page 330 of 484
REJ09B0051-0300

(2) Retrieve from Stack

If the retrieve from bank instruction, RESBANK, is executed when the register bank overflow bit
in SR is set to 1, the following operations occur.

(a) The contents of the banked registers (R0 to R14, GBR, MACH, MACL, and PR) are
retrieved from the stack. The order in which the contents of these registers are retrieved is
R0, R1, � R13, R14, PR, GBR, MACH, MACL.

(b) The bank number (BN) bits in the bank number register (IBNR) remain set to the
maximum value, N.

7.4 Register Bank Data Send Instructions

The LDBANK and STBANK instructions can be used to send user-defined register bank data to
and from general register R0 for debugging purposes.

7.4.1 Description of Instructions

(1) LDBANK (Load Data from Register Bank to R0)

Format: LDBANK @Rm,R0
Operation: Sends 4 bytes of data from the register bank address indicated by Rm to R0.

(2) STBANK (Store Data from R0 to Register Bank)

Format: STBANK R0,@Rn
Operation: Sends the contents of R0 to the register bank address indicated by Rn.

7.4.2 Register Bank Addressing

Figure 7.4 illustrates the correlation between register bank send command address values (Rm in
the case of LDBANK and Rn in the case of STBANK) and register bank entries. The bank number
is specified by address bits 15 to 7 (BN), and the entry within the bank (R0 to R14, GBR, MACH,
MACL, PR, VTO) is specified by address bits 6 to 2 (EN). Address bits 31 to 16 and 1 to 0 should
all be cleared to 0. If the value of these bits is not all 0 operation cannot be guaranteed in cases
where a nonexistent bank is specified by address bits 15 to 7 or a nonexistent entry is specified by
address bits 6 to 2.



Section 7   Register Banks

Rev. 3.00  Jul 08, 2005  page 331 of 484
REJ09B0051-0300

R000000Bank 0000000000

Bank 1000000001

Bank 2000000010

Bank 3000000011

Bank N-2111111110

Bank N-1111111111

..
..

R100001

R200010

R300011

R400100

R500101

R600110

R700111

R801000

R901001

R1001010

R1101011

R1201100

R1301101

R1401110

VTO10000

PR10001

GBR10010

MACL10011

31 16 15 2 1 07 6

0 0 BN EN 00.........................

Register bank send instruction address (Rm, Rn)

Register banks (overall)

N = 512

00110

000000011

Single register bank

MACH01111

Figure 7.4   Register Bank Addressing



Section 7   Register Banks

Rev. 3.00  Jul 08, 2005  page 332 of 484
REJ09B0051-0300

7.5 Register Bank Exceptions

There are two types of register bank exception (register bank error): register bank overflow and
register bank underflow.

7.5.1 Register Bank Error Sources

(1)  Register Bank Overflow

This exception occurs if, after data has been saved to all of the register banks, an interrupt for
which register bank use is allowed is received by the CPU, and the register bank overflow
exception is not masked by the interrupt controller. In this case the bank number (BN) bits in the
bank number register (IBNR) remain set to the maximum value, N, and no data is saved to the
register bank.

(2) Register Bank Underflow

This exception occurs if the RESBANK instruction is executed when no data has been saved to
the register banks. In this case the values of R0 to R14, GBR, MACH, MACL, and PR do not
change. In addition, the bank number (BN) bits in the bank number register (IBNR) remain set to
0.

7.5.2 Register Bank Error Exception Processing

If a register bank error is generated, register bank error exception processing begins. When this
happens the CPU performs the following operations.

1. The contents of the status register (SR) are saved to the stack.
2. The value of the program counter (PC) is saved to the stack. The PC value that is saved when a

register bank overflow occurs is the starting address of the next instruction after the last
executed instruction. The PC value that is saved when a register bank underflow occurs is the
starting address of the relevant RESBANK instruction.
To prevent multiple interrupts from occurring when a bank overflow occurs, the level of the
interrupt that caused the overflow is written to the interrupt mask bits (I3 to I0) of the status
register (SR).

3. The exception service routine start address is extracted from the exception processing vector
table corresponding to the register bank error, and the program is run beginning from that
address.



Section 7   Register Banks

Rev. 3.00  Jul 08, 2005  page 333 of 484
REJ09B0051-0300

7.6 SR Register Bank Overflow Bit (BO Bit)

The BO bit is modified when the contents of the SR register are retrieved by the RTE instruction.
The BO bit is not modified when a RESBANK instruction is executed. The BO bit is set to 1 if
exception generation by the interrupt controller is not enabled in cases where a bank overflow
occurs during an interrupt. If exception generation by the interrupt controller is enabled for cases
when a bank overflow occurs during an interrupt, the BO bit is not modified. The BO bit is
modified by the LDC Rm.SR and LDC.L @Rmt.SR instructions.



Section 7   Register Banks

Rev. 3.00  Jul 08, 2005  page 334 of 484
REJ09B0051-0300



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 335 of 484
REJ09B0051-0300

Section 8   Pipeline Operation

This section describes the pipeline operation of the various instructions.  This is information for
calculating the number of CPU instruction execution states (number of system clock cycles).

The SH-2A/SH2A-FPU is a 2-ILP (2-Instruction-Level-Parallelism) super-scalar pipelining
microprocessor.  Instruction execution is pipelined, and two instructions can be executed in
parallel.  A Harvard architecture is used, and there is no contention between memory accesses and
instruction fetches.  As an instruction fetch unit is provided, the CPU core does not stop during an
instruction fetch.

8.1 Basic Pipeline Configuration

The SH-2A/SH2A-FPU has the following pipelines (see figure 8.1).

• Integer pipelines 1 and 2: Process integer operations.
• Memory access pipeline: Processes memory accesses and the loading of data to the FPU.
• Multiplier pipeline: Processes multiply instructions and the storing of data from the FPU.
• Branch pipeline: Processes branch instructions.
• Shift pipeline: Processes shift instructions.
• FPU load/store pipeline: Processes FPU load/store instructions.
• FPU arithmetic operation pipeline: Processes FPU arithmetic operations.
• FPU division/square root extraction pipeline: Processes FPU division and square root

extraction.

All instructions are first processed by an integer pipeline. and are also passed to another pipeline if
necessary.  These pipelines can all operate independently of each other.  Therefore, if there is no
contention, two instructions can always continue to be issued.

Instructions that perform memory access and instructions that load data from the CPU to the FPU
use the memory access pipeline.

Multiply instructions and multiplication result register access instructions use the multiplier
pipeline. In addition, inspections that store data from the FPU use the WB stage of the multiplier
pipeline.

Branch instructions use the branch pipeline. Shift instructions use the shift pipeline.

Instructions that perform FPU internal register moves or data exchange from the FPU to memory
or the CPU use the FPU load/store pipeline.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 336 of 484
REJ09B0051-0300

Instructions that perform FPU arithmetic operations use the FPU arithmetic operation pipeline.

Of the FPU arithmetic operations, FDIV and FSQRT use the FPU arithmetic operation pipeline
and FPU division/square root extraction pipeline.

See section 8.9, Pipeline Operations for Each Instruction, for details.

The CPU pipeline stages are described in detail below.

• IF:  Instruction fetch
An instruction is fetched from memory in which the program is stored.

• ID:  Instruction decoding
The fetched instruction is decoded.

• EX:  Instruction execution
A data operation or address calculation is performed in accordance with the result of decoding.

• MA:  Memory access
A memory data access is performed.
Generated by an instruction accompanying a memory access or an instruction that performs
data exchange between the CPU and FPU.

• mm: Multiplier access
A multiplier access is performed.
Generated by an instruction accompanying a memory access or an instruction that loads data
from the CPU to the FPU.

• WB:  Write-back
The result (data) accessed by a memory access or multiplier access is returned to the register.

The FPU pipeline stages are described in detail below.  CPU and FPU pipelines share the first-
stage instruction fetch (IF).

• DF:  FPU decoding
The fetched instruction is decoded.

• E1:  FPU execution stage 1
A floating-point operation is initialized.

• E2:  FPU execution stage 2
The floating-point operation is executed.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 337 of 484
REJ09B0051-0300

• SF:  FPU store
The floating-point operation is completed, and the result is written to an FPU register.

• ED:  FPU division and square root calculation
Used only for FDIV and FSQRT.

• EX:  FPU load/store stage 1
Floating-point load/store instruction data preparation is performed.

• NA:  FPU load/store stage 2
Floating-point load/store instruction data exchange is performed.

The length of all stages after ID and DF is the same.  Only IF may be extended due to a wait for
data, but as the instruction fetch unit and pipelines operate independently, pipelining can be
continued in this case, also, for instructions that have already been fetched.

As shown in figure 8.2, instruction stages continue to flow together with instruction execution,
forming a pipeline.  The basic pipeline flow is shown in figure 8.1.  The interval during which one
stage is executed is called a slot, and is indicated by �↔�.  Each instruction has at least a 3-stage
structure.

The three stages IF, ID, and EX (integer pipeline) are present for each instruction.  Thereafter,
instruction processing is performed with the necessary pipelines operating simultaneously.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 338 of 484
REJ09B0051-0300

IF

IF

ID

ID

EX

EX

MA WB

E1 E2 SF

Preceding 
instruction

Succeeding 
instruction

Priority allocation (always allocated)

Normal allocation (allocated if free)

Integer pipeline 1

Integer pipeline 2

FPU arithmetic operation pipeline

Memory access pipeline

mm mm Multiplier pipelineWB

EX

ED FPU division/square root extraction pipeline

EX NA SF FPU load/store pipelineDF

DF

CPU

FPU

EX

EX

Branch pipeline

Shift pipeline

Figure 8.1   SH-2A/SH2A-FPU Pipelines

↔ ↔ ↔ ↔ ↔ ↔ ↔ : Slots
Instruction 1 IF ID EX MA WB
Instruction 2 IF ID EX
Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX
Instruction 5 IF ID EX
Instruction 6 IF ID EX MA WB

→
Time

Instruction
stream

Figure 8.2   Basic Pipeline Configuration



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 339 of 484
REJ09B0051-0300

8.2 Slots and Pipeline Flow

The interval during which one stage is executed is called a slot.  The following rules apply to a
slot.

(1) Each stage of an instruction (IF, ID, EX, MA, WB, mm, E1, E2, DF, ED, SF, NA) is always
executed in one slot.  Two or more stages are never executed in one slot (see figure 8.3).  The
ED stage operates without regard to a slot.

X ↔ ←→ ↔ ↔ ↔ ↔ ↔ ↔ ↔ : Slots
Instruction 1 IF ID EX MA WB
Instruction 2 IF ID EX MA WB

Note: ID and EX of instruction 1 are executed in one slot.

Figure 8.3   Impossible Pipeline Flow (1)

(2) The maximum number of different stages of different instructions set in one slot is two in the
case of integer pipelines, and one in the case of other pipelines.  Simultaneous pipeline
execution never exceeds this number (see figure 8.4).

Instruction 1 IF ID EX
Instruction 2 IF ID EX MA WB
Instruction 3 IF ID EX

Note: Three ID stages are executed in one slot.

Figure 8.4   Impossible Pipeline Flow (2)

(3) The number of states (number of system clock cycles) S required for execution of one slot is
calculated using the following conditions.
(a) S = (maximum number of states among stages of each instruction contained in one slot)

That is to say, instructions that have other short stages are stalled by the longest stage.
(b) The number of execution states of each stage is as follows:

• IF: Number of memory access clocks for instruction fetch
(As a fetch buffer is provided and instruction fetches are performed beforehand,
pipeline stalling only occurs when a fetched instruction must be decoded
immediately.)

• ID: Always 1 state
• EX: Always 1 state



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 340 of 484
REJ09B0051-0300

• MA: Number of memory access clocks for data access
• WB: Always 1 state
• mm: Always 1 state
• DF: Always 1 state
• E1: Always 1 state
• E2: Always 1 state
• SF: Always 1 state
• ED: Always 1 state, but operates without regard to slots.
• NA: Always 1 state

For example, figure 8.5 shows the pipeline flow when IF (memory access for instruction fetch) of
instructions 1 and 2 takes 2 cycles, MA (memory access for data access) of instruction 1 takes 3
cycles, and other stages take 1 cycle.  ��� indicates stalling.  For the sake of simplicity, this
figure does not take super-scalar operation into consideration.

←→ ↔ ↔ ←→ ↔ : Slots
(2) (1) (1) (3) (1)  ← Number of states

Instruction 1 IF IF ID EX MA MA MA WB
Instruction 2 IF IF ID � � EX

Note: If IF requires more than one cycle, the slot is extended only if the instruction must be
decoded immediately.

Figure 8.5   Slots Requiring a Number of Cycles



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 341 of 484
REJ09B0051-0300

8.3 Instruction Execution and Parallel Execution Capability

The SH-2A/SH2A-FPU is a 2-ILP (2-Instruction-Level-Parallelism) super-scalar pipelining
microprocessor.  When two instructions are in the ID stage, two instructions can be executed
simultaneously (see figure 8.6).

ADD  R2,R3 IF ID EX
MOV.L  @R0,R1 IF ID EX MA WB
ADD  R4,R3 IF ID EX
FADD  FR1,FR2 IF DF E1 E2 SF

Figure 8.6   Example of Parallel Execution

However, parallel execution is not possible in the following cases:

• When resource contention occurs (described in 8.3.1)
• When waiting for the result of a previously issued instruction (described in 8.3.2)
• When register contention or flag contention occurs (described in 8.3.3)
• When a multi-cycle instruction is executed as a preceding instruction (described in 8.3.4)
• When a 32-bit instruction is executed as a preceding instruction (described in 8.3.5)
• In the case of an instruction that uses FPSCR, an FPU instruction, or an FPU-related CPU

instruction (described in 8.3.6)
• Delayed unconditional branch instruction at which a branch occurs, and delay slot (described

in 8.3.7)

When IF stages are completed for two instructions without the occurrence of such contention, the
SH-2A/SH2A-FPU can perform parallel execution of the two instructions.

The above cases are described in the following subsections.  Terms used in the descriptions are as
follows:

• Preceding instruction: Earlier instruction in the same slot
• Succeeding instruction: Later instruction in the same slot
• Previously issued instruction: Generic term for an instruction that has already been issued



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 342 of 484
REJ09B0051-0300

Previously issued instruction IF ID EX
Previously issued instruction IF ID EX MA WB
Preceding instruction IF ID EX
Succeeding instruction IF ID E1 E2 SF

Note: Box indicates reference slot.

Figure 8.7   Definitions of Preceding, Succeeding, and Previously Issued Instructions

8.3.1 Details of Resource Contention

As there is only one each of pipelines other than integer pipelines, if a preceding instruction and
succeeding instruction attempt to use such a pipeline simultaneously, contention occurs and the
succeeding instruction has to wait to be executed.  Cases in which contention occurs are as
follows.

(1) When the preceding instruction and succeeding instruction are both instructions accompanying
a memory access (figure 8.8)
Alternatively, in the case of a combination of a CPU → FPU data transfer instruction and
memory write instruction (figure 8.8), or a combination with another FPU → CPU data
transfer instruction.
In these cases, memory access pipeline contention occurs.

MOV.L @R1+,R2 IF ID EX MA
MOV.L @R1+,R3 IF � ID EX MA

Note: There is a maximum of one memory access (MA) per slot.

Figure 8.8   Example of Memory Access Contention

LDS R0,FPUL IF ID EX : CPU pipeline
IF DF EX NA SF : FPU pipeline

MOV.L R1,@R3 IF � ID EX MA : CPU pipeline

Note: Contention between LDS instruction and memory write instruction

Figure 8.9   Example of Contention between LDS Instrunction
and Memory Write Instruction



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 343 of 484
REJ09B0051-0300

Instructions that transfer data from the FPU to the CPU do not conflict with memory access
instructions (figure 8.10). In addition, instructions that transfer data from the CPU to the FPU do
not conflict with memory access instructions (figure 8.11).

STS FPUL,R0 IF ID EX WB : CPU pipeline
IF DF EX NA SF : FPU pipeline

MOV.L R1,@R3 IF ID EX MA WB WB : CPU pipeline

Note: No contention between STS instruction and memory access instruction

Figure 8.10   Example of Contention between STS and Memory Access

LDS R0,FPUL IF ID EX : CPU pipeline
IF DF EX NA SF : FPU pipeline

MOV.L @R1+,R3 IF ID EX MA WB : CPU pipeline

Note: No contention between LDS instruction and memory read instruction

Figure 8.11   Example of LDS Instruction and Memory Read Instruction

(2) When the preceding instruction and succeeding instruction are both instructions that use the
multiplier (figure 8.12).
With the multiplier, contention also occurs when a previously issued instruction is locked
(figure 8.13).
In addition, instructions that read MACH or MACL, MULR instructions, and instructions that
transfer the value of FPUL or FPSCR to the CPU cause contention because they share the read
bus (figure 8.14).

MULS.W R2,R1 IF ID mm mm
MULR R0,R3 IF � ID mm mm mm WB

Figure 8.12   Example of Multiplier Contention

Multiplier locked ↔

LDS.L @R1+, MACH IF ID EX MA WB
MULR R0,R3 IF � � ID mm mm mm WA

Figure 8.13   Example of Contention Due to Previously Issued Instruction



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 344 of 484
REJ09B0051-0300

STS MACH,R0 IF ID EX MA WB
STS FPUL,R1 IF � ID mm mm mm WB

Note: The two instructions using the multiplication result read bus conflict with each other.

Figure 8.14   Example of Contention between Instructions Using Multiplication Result
Read Bus

(3) When the preceding instruction and succeeding instruction are both shift instructions or rotate
instructions (figure 8.15)

SHAD  R0,R1 IF ID EX
SHAD  R2,R3 IF � ID EX

Figure 8.15   Example of Shift Instruction Contention

(4) When the preceding instruction and succeeding instruction are both FPU arithmetic operation
instructions (figure 8.16)
With regard to FPU arithmetic operation instructions, complex resource contention occurs with
double-precision instructions or with FDIV or FSQRT instructions.  See section 8.6,
Contention Due to FPU, for details.

FADD  FR0,FR1 IF DF E1 E2 SF
FADD  FR2,FR3 IF � DF E1 E2 SF

Figure 8.16   Example of FPU Arithmetic Operation Instruction Contention

(5) When the preceding instruction and succeeding instruction are both FPU load/store
instructions (figure 8.17)

FNEG  FR0 IF DF EX NA SF
FMOV  FR1,FR3 IF � DF EX NA SF

Figure 8.17   Example of FPU Load/Store Instruction Contention



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 345 of 484
REJ09B0051-0300

8.3.2 Details of Contention Due to Wait for Result of Previously Issued Instruction

When the result of a previously issued instruction is used as a source, execution is performed after
a wait equivalent to the latency of that instruction.  Cases where this applies include the following:

• When waiting for the result of a memory access (see section 8.5, Effect of Memory Load
Instruction on Pipeline, for details)

• When waiting for the result of an FPU operation (see section 8.6, Contention Due to FPU, for
details)

• When waiting for the result of multiplication (see section 8.7, Contention Due to Multiplier,
for details)

If the preceding instruction causes contention in these cases, the succeeding instruction must wait
to be executed.

If the succeeding instruction causes contention, the preceding instruction is executed if there is no
other contention.

8.3.3 Details of Register Contention and Flag Contention

In the following cases, register contention or flag contention occurs in the same slot.

(1) When the succeeding instruction uses the destination register or flag of the preceding
instruction as a source register or flag (excluding a case where the preceding instruction is a
zero-latency instruction) (figures 8.18 and 8.19)

CMP/EQ R2,R3 IF ID EX
BF IF � ID EX

Figure 8.18   Example of Flag Contention between Preceding Destination
and Succeeding Source

MOV R3,R4 IF ID EX
ADD R4,R5 IF ID EX

Figure 8.19   Example of No Contention between Zero-Latency Instruction and Succeeding
Instruction



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 346 of 484
REJ09B0051-0300

(2) When the succeeding instruction writes to the destination register or flag of the preceding
instruction. (However, contention only occurs if an instruction other than a multiply
instruction, divide instruction, LDBANK instruction, RESBANK instruction, MOVMU
instruction, or MOVML instruction writes to registers and flags other than the FPU register
and CS bit. No contention is detected with a multiply instruction, divide instruction, LDBANK
instruction, or RESBANK instruction. In addition, contention is only detected for Rn with the
MOVMU instruction and for R0 with the MOVML instruction. No contention occurs if either
of these instructions write to other registers.) (Figures 8.20 to 8.25)

ADD R3,R4 IF ID EX
MOV R5,R4 IF � ID EX

Figure 8.20   Example of Contention Due to Instruction that Overwrites Destination of
Preceding Instruction 1

MOV.L @R0,R1 IF ID EX MA
MOV.L @R2,R1 IF � � ID EX

Figure 8.21   Example of Contention Due to Instruction that Overwrites Destination of
Preceding Instruction 2

CLIPS.B R3 IF ID EX
CLIPS.B R4 IF ID EX

Figure 8.22   Example of No Contention in Case of CS Bit

MOV R5,R6 IF ID EX
MULR R0,R6 IF ID mm mm mm WB

Figure 8.23   Example of MULR No Contention

MOV R5,R6 IF ID EX
MOVMU.L@R15+,R13 IF ID EX MA MA MA WB

Figure 8.24   Example of MOVMU.L No Contention



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 347 of 484
REJ09B0051-0300

MOV    R5,R13 IF ID EX
MOVMU.L@R15+,R13 IF -- ID EX MA MA MA WB

Figure 8.25   Example of MOVMU.L Contention

8.3.4 Details of Contention Due to Multi-Cycle Instruction

An instruction that does not have one execution state is called a �multi-cycle instruction.�  The
following rules apply to such instructions.

(1) When a multi-cycle instruction is executed as a preceding instruction, it cannot be executed in
parallel with the succeeding instruction.

(2) During execution of a multi-cycle instruction, if the slot is not the last slot, the next instruction
cannot be newly executed.  �During execution� here refers to a slot not exceeding the number
of execution state cycles counting from the instruction ID stage.

(3) At the end of the execution states of a multi-cycle instruction (in the last slot: equivalent to the
execution state cycle), parallel execution with the next instruction is possible.  Parallel
execution can be performed even if the next instruction is a 32-bit instruction.

(4) A multi-cycle instruction can be executed in parallel with a preceding instruction that is a
single-cycle instruction (an instruction with one execution state).
A relevant example is shown in figure 8.26.

Multi-cycle instruction execution
in progress ←→

Last multi-cycle instruction slot ↔

ADD  R2,R3 IF ID EX
TST #imm,@(R0,GBR)
(Execution state 3)

IF ID EX MA EX

MOVI20  #imm,R4 IF � ID EX

Figure 8.26   Example of Multi-Cycle Instruction Execution

(5) If a multicycle 32-bit instruction such as BAND.B, BANDNOT.B, BLD.B, BLDNOT.B,
BOR.B, BORNOT.B, or BXOR is followed on the next line by the instruction BAND.B,
BANDNOT.B, BLD.B, BLDNOT.B, BOR.B, BORNOT.B, or BXOR, the instruction on the
second line is executed in parallel (figure 8.27).



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 348 of 484
REJ09B0051-0300

BAND.B #imm3, (disp12,Rn) IF ID EX MA EX
(Execution state 3)
BOR.B #imm3, (disp12,Rn) IF � ID EX MA EX

Figure 8.27   Execution Example for Successive 32-Bit Bit Manipulation Instructions

(6) Except for the cases listed in (5), multicycle 32-bit instructions cannot be executed in parallel
with the instruction on the line following them (figure 8.28).

BAND.B #imm3, (disp12,Rn) IF ID EX MA EX
(Execution state 3)
ADD #imm, Rn IF � � ID EX MA EX

Figure 8.28   Multicycle 32-Bit Instruction Execution Example

8.3.5 Details of Contention Due to 32-Bit Instruction

The following rules apply to execution of 32-bit instructions.

(1) Parallel execution is not possible when the preceding instruction is a 32-bit instruction (figure
8.29).

(2) When the succeeding instruction is a 32-bit instruction, the preceding instruction can be
executed but the succeeding instruction cannot (figure 8.29).

(3) The last slot of a multi-cycle instruction and a 32-bit instruction can be executed in parallel
(figure 8.26).

(4) Only in cases where the preceding instruction in the last slot is a multicycle 32-bit instruction
such as BAND.B, BANDNOT.B, BLD.B, BLDNOT.B, BOR.B, BORNOT.B, or BXOR, and
the instruction on the next line is BAND.B, BANDNOT.B, BLD.B, BLDNOT.B, BOR.B,
BORNOT.B, or BXOR, does parallel execution take place. Parallel execution does not occur
in combinations with any other instructions (figures 8.27 and 8.28).

(5) A 32-bit instruction cannot be executed unless IF has been completed for the upper 16 bits and
the lower 16 bits (figure 8.30).

Relevant examples are shown in figures 8.26 and 8.27.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 349 of 484
REJ09B0051-0300

MOVI20  #imm,R1 IF ID EX
MOVI20  #imm,R2 IF ID EX
NOP IF ID

Figure 8.29   Example of 32-Bit Instruction Contention

BT (branch taken, to 4n+2) IF ID EX

MOVI20  #imm,R1 (upper 16 bits) IF � ID EX
(lower 16 bits) IF ID

Figure 8.30   Example of 32-Bit Instruction Internal Stalling

8.3.6 Details of Contention Due to Instruction that Uses FPSCR

If an instruction uses FPSCR, parallel execution is not possible with any other instruction if this
instruction precedes it. If this instruction follows, parallel execution is not possible with FPU
instructions or FPU-related CPU instructions (figure 8.31).

ADD  R3,R4 IF ID EX
STS  FPSCR,R1 IF ID EX WB SF
FADD  FR1,FR3 IF DF E1 E2 SF

Figure 8.31   Example of Contention in Case of Instruction that Uses FPSCR



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 350 of 484
REJ09B0051-0300

8.3.7 Details of Contention Due to Branch Instruction

The following rules apply to contention due to a branch instruction.

(1) Parallel execution is possible when the branch instruction does not branch.
(2) When a branch instruction is supplied as a succeeding instruction, parallel execution with the

preceding instruction is possible regardless of the branching situation.
(3) When a branch instruction is supplied as a preceding instruction, parallel execution with the

succeeding instruction is not possible if a branch occurs.  Parallel execution is not possible
even if IF has already been completed for the delay slot (figure 8.32).

(4) For the delay slot, ID is performed in the next slot in which there is a branch instruction EX
stage.

(5) Execution of a delayed branch instruction is delayed if a fetch has not been performed for the
delay slot.

A relevant example is shown in figure 8.28.

ADD R3,R4 IF ID EX
JMP @R2 IF ID EX
Delay slot IF � ID EX
Branch destination instruction IF ID

Figure 8.32   Example of Contention between Branch Instructions



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 351 of 484
REJ09B0051-0300

8.4 Number of Instruction Execution States

The number of execution states of an instruction is counted in the EX stage execution interval.
The number of states from the start of instruction 1 EX stage execution until the start of the EX
stage of following instruction 2 constitutes the execution time of instruction 1.

For example, in the case of the pipeline flow shown in figure 8.33, the EX stage interval of
instruction 1 and instruction 2 consists of 4 stages, and therefore the instruction 1 execution time is
4 states.  Also, the EX stage interval of instruction 2 and instruction 3 consists of 1 states, and
therefore the instruction 2 execution time is 1 state.

If the program ends at instruction 3, take instruction 4 as the next instruction after instruction 3 in
virtual terms, and calculate the execution time of instruction 3 from the EX stages of instruction 3
and instruction 4 in MOV Rm,Rn.  (In the example in figure 8.33, the execution time of
instruction 3 is 1 state.)

The execution time from instruction 1 through instruction 3 in figure 8.33 is a total of 4 + 1 + 1 =
6 states.

For the sake of simplicity, this figure does not take super-scalar operation into consideration.

←→↔ ←→ ↔ ↔ ↔

(2) (1) (1) (3) (1) (1) (1)
Instruction 1 IF IF ID EX MA MA MA WB
Instruction 2 IF IF ID � � EX
Instruction 3 IF IF � ID EX MA
(Instruction 4: MOV Rm,Rn IF � ID EX )

Figure 8.33   Example of How to Count Number of Instruction Execution States



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 352 of 484
REJ09B0051-0300

8.5 Effect of Memory Load Instruction on Pipeline

With an instruction that performs a load from memory, return of data to the destination register is
performed in the WB stage at the end of the pipeline.  Looking at such a load instruction
(designated �load instruction 1� here) and the instruction immediately following it (designated
�instruction 2�), the EX stage of instruction 2 comes before the WB stage of load instruction 1.

If, in this case, the destination register of load instruction 1 is used by instruction 2, since the
contents of that register have not yet been prepared, execution of the ID stage is delayed for a
period equivalent to the latency of instruction 1.  The same also applies if the destination register
of load instruction 1 is the same as the destination, rather than the source, of instruction 2.

Similarly, execution of the ID stage is stalled for an additional slot if the destination of load
instruction 1 is the status register (SR) and a flag in SR is fetched and used by instruction 2 (such
as ADDC, for example).

When this kind of register contention occurs, the slot in which the destination register can be used
is the cycle after completion of the MA stage of instruction 1.  This is illustrated in figure 8.34.

Therefore, if program is written in which an instruction that uses the result of a load instruction is
placed immediately after that load instruction, execution speed will decrease.  Generally, the
latency of a load instruction is 2, and therefore speed will not decrease if an instruction that uses
the result of a load is placed 3 or 4 instructions after the load instruction.  If a memory access
instruction is executed as a preceding instruction, the applicable number of instructions is 4 or
more, and if executed as a succeeding instruction, 3 or more.

Load instruction 1 (MOV.W @R0,R1) IF ID EX MA WB
Instruction 2 (ADD R1,R3) IF � � ID EX

IF � ID EX
IF � � ID EX

Figure 8.34   Effect of Memory Load Instruction on Pipeline



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 353 of 484
REJ09B0051-0300

8.6 Contention Due to FPU

When a register (FR0 to FR15, or FPUL) that stores the result of a floating-point arithmetic
operation instruction, FMOV instruction, or floating-point load instruction is read (used as a
source register) by a following floating-point arithmetic operation instruction or FMOV FRm,FRn
instruction, the next instruction is issued after completion of the operation.  As a result, that
instruction is kept waiting for a period equivalent to the latency cycle of the preceding operation
instruction (figure 8.35).  A zero-latency instruction can be executed in parallel with the
succeeding instruction even if the succeeding instruction uses the result register as its source
(figure 8.36).

Floating-point arithmetic operation
instruction (single-precision)
(FADD FR1,FR2) (latency 3)

IF DF E1 E2 SF

Next floating-point instruction
(single-precision)
(FMOV FR2,FR3)

IF � � DF EX NA SF

Figure 8.35   Example of Use of FPU Operation Result by Succeeding Instruction

Floating-point instruction
(single-precision)
(FMOV FR0,FR2) (latency 0)

IF DF EX NA SF

Next floating-point arithmetic operation
instruction (single-precision)
(FADD FR2,FR3)

IF DF E1 E2 SF

Figure 8.36   Example of Use of Result of Zero-Latency Instruction as Source

When a register (FR0 to FR15) that stores the result of a floating-point arithmetic operation
instruction is read (used as a source register) by a following FMOV or STS.L instruction, and the
value is output to memory, latency is shortened by 1 cycle (figure 8.37).

Floating-point arithmetic operation
instruction (single-precision)
(FADD FR0,FR2)

IF DF E1 E2 SF

Next floating-point instruction
(single-precision)
(FMOV FR2,@R3)

IF � DF EX NA

Figure 8.37   Example of Writing Result to Memory Immediately Following FPU Operation



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 354 of 484
REJ09B0051-0300

When a register (FPUL) that stores the result of a floating-point arithmetic operation instruction is
read (used as a source register) by a following STS instruction, and the value is output to the CPU,
latency is shortened by 2 cycles (figure 8.38).

Floating-point arithmetic operation
instruction (single-precision)
(FTRC FR0,FPUL)

IF DF E1 E2 SF

Next floating-point instruction
(single-precision)
(STS FPUL,R3)

IF DF EX NA

Figure 8.38   Example of Transferring Result to CPU Immediately Following FPU Operation

The time required for the result of an FCMP instruction to be reflected in the T bit is 2 cycles in
the case of single-precision, and 3 cycles in the case of double-precision.  As a result, if that
instruction (the following instruction) references the T bit, execution is delayed by the above slot
interval (figure 8.39).

Instruction 1 (single-precision)
(FCMP FR0,FR1)

IF DF E1 E2

Instruction 2 (instruction that
 references T bit)
(BF)

IF � ID EX

Figure 8.39   Example of Referencing T Bit Immediately After FCMP Instruction

When the FPSCR value is changed using an LDS or LDS.L instruction, execution of the next
instruction by a 3-slot interval (figure 8.40).

Instruction 1
(LDS R2,FPSCR)

IF DF EX NA SF

Instruction 2
(FADD FR4,FR5)

IF � � � DF E1 E2 SF

Figure 8.40   Example of Performing FPU Operation Immediately After FPSCR Load



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 355 of 484
REJ09B0051-0300

When the FPSCR value is read using an STS or STS.L instruction, FPSCR is read after
completion of the previously issued operation.  As a result, execution is delayed by an interval of
[latency of preceding operation + 1 slot] (figure 8.41).

Instruction 1 (single-precision)
(FADD FR6,FR9)

IF DF E1 E2 SF

Instruction 2
(STS FPSCR,R3)

IF � � � DF EX NA SF

Figure 8.41   Example of Reading FPSCR

Double-precision floating-point arithmetic operation instructions (FADD, FSUB, FMUL) require
6 cycles for the E1 stage.  Another floating-point arithmetic operation instruction will not enter the
E1 stage during this interval.  If another floating-point arithmetic operation instruction appears
before a double-precision floating-point arithmetic operation instruction finishes the E1 stage, that
floating-point arithmetic operation instruction has its execution delayed by a predetermined slot
interval, and enters the E1 stage after the double-precision floating-point arithmetic operation
instruction has finished the E1 stage.  A floating-point load/store instruction arriving during this
interval can be executed (figure 8.42).

FADD DR4,DR6 IF DF E1 E1 E1 E1 E1 E1 E2 SF
FABS DR0 IF DF EX NA SF
STS FPUL,R0 IF DF EX NA
FMUL DR2,DR0 IF � � � � � DF E1 E2 SF

Figure 8.42   Example of Double-Precision FPU Operation and Next FPU Instruction

With an FDIV or FSQRT instruction, after the E1 stage is used in initialization, operation is
performed by an independent computer (ED stage), after which the operation result is written
back.  A floating-point arithmetic operation instruction following either of these instructions
operates as described below.  See section 8.9, Pipeline Operations for Each Instruction, for the
kind of pipeline used with each instruction.

(1) During E1 stage use in initialization, another floating-point arithmetic operation instruction
will not enter the E1 stage.  Other instructions enter the E1 stage after FDIV or FSQRT
initialization ends.

(2) After an FDIV or FSQRT instruction has progressed to the ED stage, an FPU instruction is
executed without delay unless it uses the FDIV or FSQRT instruction result register (figure
8.40).



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 356 of 484
REJ09B0051-0300

(3) At the end of an FDIV or FSQRT instruction, operation write-back occurs.  The E1 stage is
used again here, and therefore if an instruction requests E1 stage operation from just this point
onward, the subsequent instruction is kept waiting until the FDIV or FSQRT instruction
finishes using the E1 stage (figure 8.44).

(4) An FDIV or FSQRT instruction immediately following an FDIV or FSQRT instruction cannot
enter the ED stage while the preceding FDIV or FSQRT instruction is using the ED stage.

Instruction 1
(single-precision)
(FDIV  FR6,FR7)

IF DF E1 ED ED ED ED ED ED ED ED E1 E2 SF

Instruction 2
(single-precision)
(FADD  FR8,FR10)

IF DF E1 E2 SF

Figure 8.43   Example 1 of E1 Stage Contention Due to FDIV

Instruction 1
(single-precision)
(FDIV  FR6,FR7)

IF DF E1 ED ED ED ED ED ED ED ED E1 E2 SF

Other instruction :
Instruction 2
(single-precision)
(FADD  FR8,FR10)

IF DF E1 E2 SF

Instruction 3
(single-precision)
(FADD  FR9,FR11)

IF � DF E1 E2 SF

Figure 8.44   Example 2 of E1 Stage Contention Due to FDIV

If a write was performed by a previous instruction on a register used as a source register by a
double-precision arithmetic operation instruction, and the latency of the previous instruction is 2
cycles or less, the latency of those instructions will be 2 (figure 8.45).



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 357 of 484
REJ09B0051-0300

Floating-point load/store
instruction (double-
precision)
(FMOV  DR0,DR2)
(latency 1 → latency 2)

IF DF EX NA SF

Next floating-point
arithmetic operation
instruction (double-
precision)
(FADD  DR2,DR4)

IF � � DF E1 E1 ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ E1 E2 SF

Figure 8.45   Example of 1-Latency Instruction Immediately Preceding
Double-Precision Arithmetic Operation

If the destination register of a double-precision arithmetic operation instruction is used as a source
register by the following instruction, if �n� of FRn is an odd number, latency will be reduced by 1
cycle (figure 8.46).  However, latency will not be reduced if �n� of FRn is an even number (figure
8.47).

Floating-point arithmetic
operation instruction
(double-precision)
(FADD  DR0,DR2)
(latency 8 → latency 7)

IF DF E1 E1 E1 E1 E1 E1 E2 SF

Next floating-point
load/store instruction
(single-precision)
(FMOV  FR3,FR5)

IF � � � � � DF EX NA SF

Figure 8.46   Example of Latency Reduction with Double-Precision Arithmetic
Operation Instruction



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 358 of 484
REJ09B0051-0300

Floating-point arithmetic
operation instruction
(double-precision)
(FADD  DR0,DR2)
(remains at latency 8)

IF DF E1 E1 E1 E1 E1 E1 E2 SF

Next floating-point
load/store instruction
(single-precision)
(FMOV  FR2,FR4)

IF � � � � � � DF EX NA SF

Figure 8.47  Example of No Latency Reduction with Double-Precision Arithmetic
Operation Instruction

When a register (FR0 to FR15, or FPUL) that stores the result of a floating-point arithmetic
operation instruction is written to (used as a destination register) by a following floating-point
arithmetic operation instruction or floating-point load/store instruction, the next instruction is kept
waiting before being executed.  The number of cycles by which execution is delayed is [latency �
1] cycles if the preceding operation was FDIV or FSQRT, and [latency � 2] cycles otherwise
(figures 8.48 and 8.49).

Floating-point arithmetic
operation instruction
(single-precision)
(FDIV  FR1,FR2)
(latency 12 → latency 11)

⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ED E1 E2 SF

Next floating-point
load/store instruction
(single-precision)
(FMOV  FR3,FR2)

� � DF EX NA SF

Figure 8.48   Example of Contention Due to Overwriting (FDIV, FSQRT)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 359 of 484
REJ09B0051-0300

Floating-point arithmetic
operation instruction
(single-precision)
(FADD  FR1,FR2)
(latency 3 → latency 1)

⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ DF E1 E2 SF

Next floating-point
instruction (single-
precision)
(FMOV  FR2,FR2)

� DF EX NA SF

Figure 8.49   Example of Contention Due to Overwriting (Except FDIV, FSQRT)

If a write is performed by the following instruction on the register used as a source register by a
double-precision FADD, FSUB, or FMUL, the following will be kept waiting for 2 cycles (figure
8.50).

Floating-point arithmetic
operation instruction
(double-precision)
(FADD  DR0,DR2)
(latency 0 → latency 2)

IF DF E1 E1 E1 E1 E1 E1 E2 SF

Next floating-point
load/store instruction
(single-precision)
(FMOV  FR4,FR1)

IF � � DF EX NA SF

Figure 8.50   Example of Write to Double-Precision Instruction Source Immediately after
Double-Precision Operation



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 360 of 484
REJ09B0051-0300

8.7 Contention Due to Multiplier

Multiply instructions, multiply-and-accumulate instructions, and instructions that manipulate the
registers for these instructions (MACH, MACL) use the multiplier. In addition, the STS FPUL,Rn,
and STS FPSCR,Rn instructions use the multiplication result read bus. Details of pipelining and
contention are given below, with instructions divided into the categories shown. The numbers
immediately following the instructions, in the form (A/B/C), indicate (number of execution
slots/latency/number of lock slots).

• Multiply-and-accumulate instructions
MAC.L (4/6/5) IF ID EX MA MA mm mm mm
MAC.W (3/5/4) IF ID EX MA MA mm mm

• Multiply instructions (I)
DMUL.S, DMUL.U, MUL.L (2/3/2) IF ID mm mm mm
MULS.W, MULU.W(1/2/1) IF ID mm mm

• Multiply instructions (II) (register return)
MULR (2/4/2) IF ID mm mm mm WB

• Register write instructions (I)
CLRMAC, LDS (1/2/1) IF ID mm mm

• Register write instructions (II)
LDS.L (1/3/2) IF ID EX MA WB

• Register read instructions (including STS FPUL,Rn and STS FPSCR,Rn)
STS (1/2/0) IF ID EX WB
STS.L (1/2/0) IF ID EX MA

Facts about Contention

Contention arises with multi-cycle instructions in the same way as with general instructions
(figure 8.51).  See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction, for details.

MAC.L @R1+,@R2+ IF ID EX MA MA mm mm mm
MAC.L @R3+,@R4+ IF � � � ID EX MA MA mm mm mm

Note: MAC.L is an instruction with an execution rate of 4.

Figure 8.51   Example of Multi-Cycle Instructions Using Multiplier

The following rules apply to instructions that use the multiplier.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 361 of 484
REJ09B0051-0300

(1) Execution of a instruction that uses a multiplication result as its source is delayed by an
interval equivalent to the latency of that instruction (figure 8.52).  If the following instruction
is one that reads MACH or MACL, execution is delayed by [latency � 1] cycled (figure 8.53).
If the following instruction is a multiply-and-accumulate instruction, execution is not delayed
(figure 8.54).

MULR R0,R4 IF ID mm mm mm WB
ADD R4,R5 IF � � � � ID EX WB

Figure 8.52   Example of Referencing Result Register Immediately after Multiplication (1)

MUL.L R2,R3 IF ID mm mm mm
STS MACH,R4 IF � � ID EX WB

Figure 8.53   Example of Referencing Result Register Immediately after Multiplication (2)

MAC.W @R1+,@R2+ IF ID EX MA MA mm mm
MAC.W @R3+,@R4+ IF � � ID EX MA MA mm mm

Figure 8.54   Example of Referencing Result Register Immediately after Multiplication (3)

(2) In the case of an instruction after an instruction that uses the multiplier, if the preceding
instruction locked the multiplier, execution is delayed until the multiplier is unlocked (figure
8.55).

MULR1 lock interval ←←←←→→→→

MULR1 R0,R1 IF ID mm mm mm WB
MULR2 R0,R2 IF � � ID mm mm mm WB

Figure 8.55   Example of Multiplier Lock Contention

However, if the following instruction is a multiply-and-accumulate instruction, it is executed
after waiting for the same kind of state interval as with an ordinary multi-cycle instruction,
rather than after waiting for the multiplier to be unlocked (figure 8.56).



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 362 of 484
REJ09B0051-0300

MULR1 lock interval ←←←←→→→→

MULR1 R0,R1 IF ID mm mm mm WB
MAC.L @R3+,@R4+ IF � ID EX MA MA mm mm mm

Figure 8.56   Example of No Multiplier Lock Contention when Following Instruction is
Multiply-and-Accumulate Instruction

If the following instruction is an instruction in category �Register write instructions (II),� it is
executed when there is one slot remaining in the lock interval (figure 8.57).

MAC.L lock interval ←→

Lock interval with
LDS.L instruction ←←←←→→→→

MAC.L @R1+,@R2+ IF ID EX MA MA mm mm mm
LDS.L @R3+,MACH IF � � � � ID EX MA WB

Figure 8.57   Example of Unlocking 1 State Earlier

STS and STS.L instructions do not lock the multiplier.  Therefore, parallel execution is
possible for an STS instruction and MUL.L instruction, etc.

MUL.L R1,R2 IF ID mm mm mm
STS MACH,R3 IF � � ID EX WB
MUL.L R4,R5 IF � ID mm mm mm
STS MACL,R6 IF � � � ID EX WB
MULR R0,R7 IF � � ID mm mm mm WB

Figure 8.58 Example of Parallel Execution of STS Instruction and MUL.L Instruction



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 363 of 484
REJ09B0051-0300

(3) MULR instructions, STS instructions affecting MACH, MACL, FPUL, or FPSCR, and STS.L
instructions affecting MACH or MACL chare a result register read bus, causing resource
contention (MA and WB stages). Therefore, parallel execution is not possible for STS and
STS.L instructions (figure 8.59).
If an STS or STS.L is located immediately after a MULR instruction, WB stage contention
occurs in the same way, and execution of the STS or STS.L instruction is delayed by 3 cycles
(figure 8.60).

MUL.L R1,R2 IF ID mm mm mm
STS MACH,R3 IF � � ID EX WB
STS.L MACL,@-R4 IF � � ID EX MA

Figure 8.59   Example of Contention with STS and STS.L

MUL.L R1,R2 IF ID mm mm mm
MULR R0,R3 IF � � ID mm mm mm WB
STS MACH,R4 IF � � � � ID EX WB

Figure 8.60   Example of Contention between MULR and STS



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 364 of 484
REJ09B0051-0300

8.8 Programming Strategy

The following programming points should be noted in order to improve instruction execution
speed.

(1) A branch destination address should be at a longword boundary in memory.  This enables
parallel execution to be performed efficiently immediately after a branch.

(2) The first 3 instructions immediately after an instruction that performs a load from memory
should not include an instruction that uses the same register as the load instruction destination
register.  If possible, an instruction that uses the destination register should be no earlier than
the fourth instruction after the load instruction.

(3) The first 3 instructions immediately after a 32-bit multiply instruction should not include an
instruction that uses the same register as the result register.

(4) Instructions immediately following a floating-point arithmetic operation instruction, and
having a latency between 1 and twice the latency of the floating-point arithmetic operation
instruction, should not use the destination register of the floating-point arithmetic operation
instruction.

8.9 Pipeline Operations for Each Instruction

Pipeline operations for each instruction are described below.  In conjunction with the previously
described rules and possibility of parallel execution, this information allows the program pipeline
flow and number of instruction execution states to be calculated.

�Instruction A� in the following pipeline diagrams denotes the instruction being described.

The �Instruction Issuance� description indicates in particular how the instruction should be treated
when taking resource contention into consideration.

The �Parallel Execution Capability� description indicates in particular how the instruction should
be treated when taking parallel execution capability into consideration.  Cases are described here
in which there is no register contention.

The number of stages and number of execution states of an instruction are indicated using the
format below.  These tables show the number of states when the instruction is executed without
register dependency.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 365 of 484
REJ09B0051-0300

Format of Number of Instruction Stages and Execution States

Type Category Number of
Stages

Execution
States Latency Contention Instructions

Type
according to
function

Instructions are
categorized
according to
differences of
operation.

Number of
instruction
stages

Number of
execution states
when there is no
contention

Number of
execution states
until execution
result is
confirmed

Resource
contention
that occurs

Applicable
instructions,
indicated by
mnemonic

Table 8.1 Number of Instruction Stages and Execution States

Type Category Number
of Stages

Execution
States Latency Contention Instructions

3 1 1 � MOV #imm,Rn

1 0 MOV Rm,Rn

1 1 MOVA @(disp,PC),R0

Data
transfer
instructions

Register-
register
transfer
instructions

MOVT Rn

MOVRT Rn

NOTT

SWAP.B Rm,Rn

SWAP.W Rm,Rn

XTRCT Rm,Rn

MOVI20 #imm,Rn� These are 32-bit
instructions. MOVI20S #imm20,Rn



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 366 of 484
REJ09B0051-0300

Type Category Number
of Stages

Execution
States Latency Contention Instructions

5 1 2 MOV.W @(disp,PC),Rn

MOV.L @(disp,PC),Rn

Data
transfer
instructions

Memory
load
instructions

MOV.B @Rm,Rn

� These instruc-
tions use the
memory access
pipeline.

MOV.W @Rm,Rn

MOV.L @Rm,Rn

MOV.B @Rm+,Rn

MOV.W @Rm+,Rn

MOV.L @Rm+,Rn

MOV.B @-Rm,R0

MOV.W @-Rm,R0

MOV.L @-Rm,R0

MOV.B @(disp,Rm),R0

MOV.W @(disp,Rm),R0

MOV.L @(disp,Rm),Rn

MOV.B @(R0,Rm),Rn

MOV.W @(R0,Rm),Rn

MOV.L @(R0,Rm),Rn

MOV.B @(disp,GBR),R0

MOV.W @(disp,GBR),R0

MOV.L @(disp,GBR),R0

5 to 20 1 to 16 2 to 17 MOVML.L @R15+,Rn

MOVMU.L @R15+,Rn

5 1 2 MOV.B @(disp12,Rm),Rn

MOV.W @(disp12,Rm),Rn

MOV.L @(disp12,Rm),Rn

MOVU.B @(disp12,Rm),Rn

� These are 32-bit
instructions.

� These instruc-
tions use the
memory access
pipeline. MOVU.W @(disp12,Rm),Rn



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 367 of 484
REJ09B0051-0300

Type Category Number
of Stages

Execution
States Latency Contention Instructions

4 1 0 MOV.B Rm,@Rn

MOV.W Rm,@Rn

Data
transfer
instructions

Memory
store
instructions

� These instruc-
tions use the
memory access
pipeline. MOV.L Rm,@Rn

1 MOV.B Rm,@-Rn

MOV.W Rm,@-Rn

MOV.L Rm,@-Rn

MOV.B R0,@Rn+

MOV.W R0,@Rn+

MOV.L R0,@Rn+

0 MOV.B R0,@(disp,Rn)

MOV.W R0,@(disp,Rn)

MOV.L Rm,@(disp,Rn)

MOV.B Rm,@(R0,Rn)

MOV.W Rm,@(R0,Rn)

MOV.L Rm,@(R0,Rn)

MOV.B R0,@(disp,GBR)

MOV.W R0,@(disp,GBR)

MOV.L R0,@(disp,GBR)

4 to 19 1 to 16 1 to 16 MOVML.L Rm,@-R15

MOVMU.L Rm,@-R15

4 1 0 MOV.B Rm,@(disp12,Rn)

MOV.W Rm,@(disp12,Rn)

� These are 32-bit
instructions.

� These instruc-
tions use the
memory access
pipeline.

MOV.L Rm,@(disp12,Rn)

PREF
instruction

4 1 0 � This instruction
uses the
memory access
pipeline.

PREF @Rm



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 368 of 484
REJ09B0051-0300

Type Category Number
of Stages

Execution
States Latency Contention Instructions

3 1 1 � ADD Rm,Rn

ADD #imm,Rn

ADDC Rm,Rn

ADDV Rm,Rn

Arithmetic
operation
instructions

CMP/EQ #imm,R0

CMP/EQ Rm,Rn

CMP/HS Rm,Rn

CMP/GE Rm,Rn

Inter-
register
arithmetic
operation
instructions
(excluding
multiply
instruc-
tions)

CMP/HI Rm,Rn

CMP/GT Rm,Rn

CMP/PZ Rn

CMP/PL Rn

CMP/STR Rm,Rn

DIV1 Rm,Rn

DIV0S Rm,Rn

DIV0U

DT Rn

EXTS.B Rm,Rn

EXTS.W Rm,Rn

EXTU.B Rm,Rn

EXTU.W Rm,Rn

NEG Rm,Rn

NEGC Rm,Rn

SUB Rm,Rn

SUBC Rm,Rn

Inter-
register
arithmetic
operations
instructions
(excluding
multiply
instructions
and DIVU
or DIVS
instruc-
tions)

SUBV Rm,Rn

CLIPU.B Rn

CLIPU.W Rn

CLIPS.B Rn

CLIP
instructions

3 1 1 �

CLIPS.W Rn



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 369 of 484
REJ09B0051-0300

Type Category Number
of Stages

Execution
States Latency Contention Instructions

Arithmetic
operation
instructions

Multiply-
and-
accumulate
instruction

7 3 4 � This instruction
locks the
multiplier for 4
states.

MAC.W @Rm+,@Rn+

Double-
precision
multiply-
and-
accumulate
instruction

8 4 5 � This instruction
locks the
multiplier for 5
states.

MAC.L @Rm+,@Rn+

4 1 2 MULS.W Rm,RnMultiply
instructions

� These instruc-
tions lock the
multiplier for 2
states.

MULU.W Rm,Rn

5 2 3 DMULS.L Rm,Rn

DMULU.L Rm,Rn

MUL.L Rm,Rn

Double-
precision
multiply
instructions

6 2 4

� These instruc-
tions lock the
multiplier for 2
states.

MULR R0,Rn

DIVU
instruction

36 34 34 � These instruc-
tions use the
shift register.

DIVU R0,Rn

DIVS
instruction

38 36 36 � DIVS R0,Rn

3 1 1 � AND Rm,Rn

AND #imm,R0

NOT Rm,Rn

Logical
operation
instructions

Register-
register
logical
operation
instructions OR Rm,Rn

OR #imm,R0

TST Rm,Rn

TST #imm,R0

XOR Rm,Rn

XOR #imm,R0

6 3 2 AND.B #imm,@(R0,GBR)

OR.B #imm,@(R0,GBR)

5 3 TST.B #imm,@(R0,GBR)

Memory
logical
operation
instructions

6 2

� These instruc-
tions use the
memory access
pipeline.

XOR.B #imm,@(R0,GBR)

TAS
instruction

6 3 3 � This instruction
uses the
memory access
pipeline.

TAS.B @Rn



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 370 of 484
REJ09B0051-0300

Type Category Number
of Stages

Execution
States Latency Contention Instructions

BLD #imm3,Rn

BSET #imm3,Rn

BCLR #imm3,Rn

Bit
manipula-
tion
instructions

Register-
register bit
operation
instructions

3 1 1 �

BST #imm3,Rn

BAND.B #imm3,@(disp12,Rn)

BANDNOT.B
#imm3,@(disp12,Rn)

BOR.B #imm3,@(disp12,Rn)

BORNOT.B
#imm3,@(disp12,Rn)

BLD.B #imm3,@(disp12,Rn)

BLDNOT.B
#imm3,@(disp12,Rn)

Memory-
T-bit bit
operation
instructions

5 3 3

BXOR.B #imm3,@(disp12,Rn)

BST.B #imm3,@(disp12,Rn)

BCLR.B #imm3,@(disp12,Rn)

Memory bit
manipula-
tion
instructions

6 3 2

� These are 32-bit
instructions.

� These instruc-
tions use the
memory access
pipeline.

BSET.B #imm3,@(disp12,Rn)

3 1 1 ROTL RnShift
instructions ROTR Rn

ROTCL Rn

Shift
instructions

� These instruc-
tions use the
shift pipeline.

ROTCR Rn

SHAL Rn

SHAR Rn

SHLL Rn

SHLR Rn

SHLL2 Rn

SHLR2 Rn

SHLL8 Rn

SHLR8 Rn

SHLL16 Rn

SHLR16 Rn

SHAD Rm,Rn

SHLD Rm,Rn



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 371 of 484
REJ09B0051-0300

Type Category Number
of Stages

Execution
States Latency Contention Instructions

3 3/1*1 3/1*1 BF labelBranch
instructions

Conditional
branch
instructions

� These instruc-
tions use the
branch pipeline.

BT label

3 2/1*1 2/1*1 BS/F labelDelayed
conditional
branch
instructions

� These instruc-
tions use the
branch pipeline.

BT/S label

3 2 2 BRA label

BRAF Rm

Unconditio
nal branch
instructions

BSR label

� These instruc-
tions use the
branch pipeline.

BSRF Rm

JMP @Rm

JSR @Rm

RTS

3 3 3 JSR/N @Rm

RTS/N

� These instruc-
tions use the
branch pipeline.

RTV/N Rm

Unconditio
nal branch
instructions
with no
delay 5 5 5 � This instruction

uses the branch
pipeline.

� This instruction
uses the
memory access
pipeline.

JSR/N @@(disp,TBR)

3 1 1 � CLRT

5 3 2 LDC Rm,SR

3 1 1 � LDC Rm,GBR

System
control
instructions

System
control
ALU
instructions

LDC Rm,TBR

LDC Rm,VBR

LDS Rm,PR

0 NOP

SETT

4 2 2 STC SR,Rn

3 1 1 STC GBR,Rn

STC TBR,Rn

STC VBR,Rn

STS PR,Rn



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 372 of 484
REJ09B0051-0300

Type Category Number
of Stages

Execution
States Latency Contention Instructions

7 5 4 LDC.L @Rm+,SR

5 1 2 LDC.L @Rm+,GBR

LDC.L
instructions

� These instruc-
tions use the
memory access
pipeline. LDC.L @Rm+,VBR

5 2 2 STC.L SR,@-Rn

4 1 1 STC.L GBR,@-Rn

System
control
instructions

STC.L
instructions

� These instruc-
tions use the
memory access
pipeline. STC.L VBR,@-Rn

LDS.L
instruction
(PR)

5 1 2 � This instruction
uses the
memory access
pipeline.

LDS.L @Rm+,PR

STS.L
instruction
(PR)

4 1 1 STS.L PR,@-Rn

4 1 1 CLRMAC

LDS Rm,MACH

Register
→ MAC
transfer
instructions

� These instruc-
tions lock the
multiplier for 1
state. LDS Rm,MACL

5 1 2 LDS.L @Rm+,MACHMemory
→ MAC
transfer
instructions

� These instruc-
tions lock the
multiplier for 2
states.

LDS.L @Rm+,MACL

4 1 2 STS MACH,RnMAC →
register
transfer
instructions

� These instruc-
tions use the
multiplication
result read path.

STS MACL,Rn

4 1 1 STS.L MACH,@-RnMAC →
memory
transfer
instructions

� These instruc-
tions use the
multiplication
result read path.

STS.L MACL,@-Rn

RTE
instruction

8 6 5 � RTE

RESBANK
instruction

11/23*2 9/19*2 8/20*2 � When the BO
bit is 1, this
instruction uses
the memory
access pipeline.

RESBANK

LDBANK
instruction

8 6 5 � LDBANK @Rm,R0

STBANK
instruction

9 7 6 � STBANK R0,@Rn



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 373 of 484
REJ09B0051-0300

Type Category Number
of Stages

Execution
States Latency Contention Instructions

TRAP
instruction

8 5 6 � TRAPA #immSystem
control
instructions SLEEP

instruction
7 5 0 � SLEEP

1 1 � LDS Rm,FPULFPU
load/store
instructions

FPU load
instructions

5

2 � These instruc-
tions use the
memory access
pipeline.

LDS.L @Rm+,FPUL

3 � LDS Rm,FPSCRFPSCR
load
instructions

5 1

3  �These instruc-
tions use the
memory access
pipeline.

LDS.L @Rm+,FPSCR

FPUL store
instruction
(STS)

4 1 2 � This instruction
uses the
multiplication
result read path.

STS FPUL,Rn

FPUL store
instruction
(STS.L)

4 1 2 � This instruction
uses the
memory access
pipeline.

STS.L FPUL,@-Rn

FPSCR
store
instruction
(STS)

4 1 2 � This instruction
uses the
multiplication
result read path.

STS FPSCR,Rn

FPSCR
store
instruction
(STS.L)

4 1 1 � This instruction
uses the
memory access
pipeline.

STS.L FPSCR,@-Rn



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 374 of 484
REJ09B0051-0300

Type Category Number
of Stages

Execution
States Latency Contention Instructions

5 1 0 FLDS FRm,FPUL

FMOV FRm,FRn

Floating-
point
register-
register
transfer
instructions

� These instruc-
tions use the
FPU load/store
pipeline. FSTS FPUL,FRn

Single-
precision
floating-
point
instructions

1 0 FLDI0 FRnFloating-
point
register-
immediate
instructions

5 � These instruc-
tions use the
FPU load/store
pipeline.

FLDI1 FRn

FSCHG
instruction

5 1 1 � This instruction
uses the FPU
arithmetic
operation
pipeline.

FSCHG

5 1 0/2*3 FMOV.S @Rm,FRn

1 1/2*3 FMOV.S @Rm+,FRn

Floating-
point
register
load
instructions

0/2*3

� These instruc-
tions use the
FPU load/store
pipeline and
memory access
pipeline.

FMOV.S @(R0,Rm),FRn

4 1 0/2*3 � This is 32-bit
instruction.

� This instruction
uses the FPU
load/store
pipeline and
memory access
pipeline.

FMOV.S @(disp12,Rm),FRn

4 1 0 FMOV.S FRm,@Rn

1/0*3 FMOV.S FRm,@-Rn

Floating-
point
register
store
instructions

0

� These instruc-
tions use the
FPU load/store
pipeline and
memory access
pipeline.

FMOV.S FRm,@ (R0,Rn)

� This is 32-bit
instruction.

� This instruction
uses the FPU
load/store
pipeline and
memory access
pipeline.

FMOV.S FRm,@(disp12,Rn)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 375 of 484
REJ09B0051-0300

Type Category Number
of Stages

Execution
States Latency Contention Instructions

5 1 FADD FRm,FRn

FLOAT FPUL,FRn

FMAC FR0,FRm,FRn

FMUL FRm,FRn

Single-
precision
floating-
point
instructions

Floating-
point
operation
instructions
(excluding
FDIV)

FSUB FRm,FRn

3 � These instruc-
tions use the
FPU arithmetic
operation
pipeline.

FTRC FRm,FPUL

5 1 FABS FRn0 � These instruc-
tions use the
FPU load/store
pipeline.

FNEG FRn

14 1 12 FDIV FRm,FRnFloating-
point
operation
instructions
(FDIV,
FSQRT)

13 1 11

� These instruc-
tions use the
FPU arithmetic
operation
pipeline and
FPU division/
square root
extraction
pipeline.

FSQRT FRn

FCMP/EQ FRm,FRnFloating-
point
compare
instructions

4 1 2 � These instruc-
tions use the
FPU arithmetic
operation
pipeline.

FCMP/GT FRm,FRn



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 376 of 484
REJ09B0051-0300

Type Category Number
of Stages

Execution
States Latency Contention Instructions

Double-
precision
floating-
point
instructions

Floating-
point
register-
register
transfer
instructions

6 2 1 � These instruc-
tions use the
FPU load/store
pipeline.

FMOV DRm,DRn

1 4 FCNVSD FPUL,DRnFloating-
point
register-
immediate
instructions

5 � These instruc-
tions use the
FPU arithmetic
operation
pipeline.

FCNVDS DRm,FPUL

6 2 0/2/3/4*4 FMOV.D @Rm,DRn

1/2/3/4*4 FMOV.D @Rm+,DRn

Floating-
point
register
load
instructions

0/2/3/4*4

� These instruc-
tions use the
FPU load/store
pipeline and
memory access
pipeline.

FMOV.D @(R0,Rm),DRn

� This is 32-bit
instruction.

� This instruction
uses the FPU
load/store
pipeline and
memory access
pipeline.

FMOV.D @(disp12,Rm),DRn

5 2 0 FMOV.D DRm,@Rn

1/0*3 FMOV.D DRm,@-Rn

Floating-
point
register
store
instructions

0

� These instruc-
tions use the
FPU load/store
pipeline and
memory access
pipeline.

FMOV.D DRm,@ (R0,Rn)

� This is 32-bit
instruction.

� This instruction
uses the FPU
load/store
pipeline and
memory access
pipeline.

FMOV.D DRm,@(disp12,Rn)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 377 of 484
REJ09B0051-0300

Type Category Number
of Stages

Execution
States Latency Contention Instructions

10 1 0/8/7/8*4 FADD DRm,DRn

FMUL DRm,DRn

FSUB DRm,DRn

6 1 0/4*3 FTRC DRm,FPUL

Double-
precision
floating-
point
instructions

6 1 0/4/3/4*4

� These instruc-
tions use the
FPU arithmetic
operation
pipeline.

FLOAT FPUL,DRn

Floating-
point
operation
instructions
(excluding
FDIV)

5 1 FABS DRn0 � These instruc-
tions use the
FPU load/store
pipeline.

FNEG DRn

27 1 0/25/24/
25*4

FDIV DRm,DRnFloating-
point
operation
instructions
(FDIV,
FSQRT)

26 1 0/24/23/
24*4

� These instruc-
tions use the
FPU arithmetic
operation
pipeline and
FPU division/
square root
extraction
pipeline.
Floating-point
compare
instructions

FSQRT DRn

FCMP/EQ DRm,DRnFloating-
point
compare
instructions

4 2 3 � These instruc-
tions use the
FPU arithmetic
operation
pipeline.

FCMP/GT DRm,DRn

Notes: 1. 1 state when a branch is not performed.
2. Number of stages, execution states, and latency are shown in BO bit = 0/BO bit = 1

order.
3. Latency is shown in CPU register/FPU register order.
4. Latency is shown in the following order: in case of use as CPU register/single-precision

register; in case of use as FRn even number side/single-precision register; in case of
use as FRn odd number side/double-precision register.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 378 of 484
REJ09B0051-0300

8.9.1 Data Transfer Instructions

(1)  Register-Register Transfer Instructions (MOV Rm,Rn)

Instruction Type

MOV Rm,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Next instruction IF ID EX  ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX  ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after three stages: IF, ID, EX.  In the EX stage, data transfer is performed via
the ALU.

Instruction Issuance

This instruction does not cause resource contention.

Parallel Execution Capability

This is a zero-latency instruction.  Parallel execution is possible even when this instruction is
executed as a preceding instruction and the succeeding instruction uses Rn.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 379 of 484
REJ09B0051-0300

(2)  Register-Register Transfer Instructions (20-Bit Immediate Value)

Instruction Types

MOVI20  #imm20,Rn
MOVI20S #imm20,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Next instruction IF ID EX  ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX  ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after three stages: IF, ID, EX.  In the EX stage, data transfer is performed via
the ALU.

Instruction Issuance

These instructions do not cause resource contention.

Parallel Execution Capability

These are 32-bit instructions, and cannot be used in parallel execution. (See section 8.3.5, Details
of Contention Due to 32-Bit Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 380 of 484
REJ09B0051-0300

(3) Register-Register Transfer Instructions
(Excluding MOV Rm,Rn, MOV120, and MOV120S)

Instruction Types

MOV #imm,Rn
MOVA @(disp,PC),R0
MOVT Rn
MOVRT Rn
SWAP.B Rm,Rn
SWAP.W Rm,Rn
XTRCT Rm,Rn
NOTT Rn

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after three stages: IF, ID, EX.  In the EX stage, data transfer is performed via
the ALU.

Instruction Issuance

The SWAP.B, SWAP.W, and XTRCT instructions use the shifter.
The other instructions do not cause resource contention.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 381 of 484
REJ09B0051-0300

(4)  Memory Load Instructions

Instruction Types

MOV.W @(disp,PC),Rn
MOV.L @(disp,PC),Rn
MOV.B @Rm,Rn
MOV.W @Rm,Rn
MOV.L @Rm,Rn
MOV.B @Rm+,Rn
MOV.W @Rm+,Rn
MOV.L @Rm+,Rn
MOV.B @-Rm,R0
MOV.W @-Rm,R0
MOV.L @-Rm,R0
MOV.B @(disp,Rm),R0
MOV.W @(disp,Rm),R0
MOV.L @(disp,Rm),Rn
MOV.B @(R0,Rm),Rn
MOV.W @(R0,Rm),Rn
MOV.L @(R0,Rm),Rn
MOV.B @(disp,GBR),R0
MOV.W @(disp,GBR),R0
MOV.L @(disp,GBR),R0

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA WB

Next instruction IF ID EX  ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX  ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline has five stages: IF, ID, EX, MA, WB.  Contention may occur if an instruction that
uses the destination register of this instruction is among the three instructions following this
instruction.  (See section 8.5, Effect of Memory Load Instruction on Pipeline.)

Instruction Issuance

These instructions use the memory access pipeline.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 382 of 484
REJ09B0051-0300

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 383 of 484
REJ09B0051-0300

(5)  Memory Load Instructions (12-Bit Displacement)

Instruction Types

MOV.B @(disp12,Rm),Rn
MOV.W @(disp12,Rm),Rn
MOV.L @(disp12,Rm),Rn
MOVU.B @(disp12,Rm),Rn
MOVU.W @(disp12,Rm),Rn

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA WB

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX  ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline has five stages: IF, ID, EX, MA, WB.  Contention may occur if an instruction that
uses the destination register of this instruction is located within the 2 instructions following this
instruction.  (See section 8.5, Effect of Memory Load Instruction on Pipeline.)

Instruction Issuance

These instructions use the memory access pipeline.

Parallel Execution Capability

These are 32-bit instructions, and cannot be executed in parallel with a subsequent instruction.
(See section 8.3.5, Details of Contention Due to 32-Bit Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 384 of 484
REJ09B0051-0300

(6)  Memory Load Instructions (MOVMU.L, MOVML.L)

Instruction Types

MOVMU.L @R15+,Rn
MOVML.L @R15+,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ MA MA MA WB

Next instruction IF � � � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

These instructions perform restoration from the stack.  The pipeline is in the form IF, ID, EX, MA,
MA, MA, ... MA, WB, with MA repeated as often as necessary.  Contention may occur if an
instruction that uses the destination register of this instruction is located within the 3 instructions
following this instruction.  (See section 8.5, Effect of Memory Load Instruction on Pipeline.)

Instruction Issuance

If there is an uncompleted instruction in the pipeline when these instructions are decoded,
execution of these instructions will be delayed.
These instructions use the memory access pipeline.

Parallel Execution Capability

These are multi-cycle instructions, and cannot be executed in parallel with a subsequent
instruction.  (See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 385 of 484
REJ09B0051-0300

(7)  Memory Store Instructions

Instruction Types

MOV.B Rm,@Rn
MOV.W Rm,@Rn
MOV.L Rm,@Rn
MOV.B Rm,@-Rn
MOV.W Rm,@-Rn
MOV.L Rm,@-Rn
MOV.B R0,@Rn+
MOV.W R0,@Rn+
MOV.L R0,@Rn+
MOV.B R0,@(disp,Rn)
MOV.W R0,@(disp,Rn)
MOV.L Rm,@(disp,Rn)
MOV.B Rm,@(R0,Rn)
MOV.W Rm,@(R0,Rn)
MOV.L Rm,@(R0,Rn)
MOV.B R0,@(disp,GBR)
MOV.W R0,@(disp,GBR)
MOV.L R0,@(disp,GBR)

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX  ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after four stages: IF, ID, EX, MA.  There is no WB stage as there is no return of
data to the register.

Instruction Issuance

These instructions use the memory access pipeline.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 386 of 484
REJ09B0051-0300

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 387 of 484
REJ09B0051-0300

(8)  Memory Store Instructions (12-Bit Displacement)

Instruction Types

MOV.B Rm,@(disp12,Rn)
MOV.W Rm,@(disp12,Rn)
MOV.L Rm,@(disp12,Rn)

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX  ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after four stages: IF, ID, EX, MA.  There is no WB stage as there is no return of
data to the register.

Instruction Issuance

These instructions use the memory access pipeline.

Parallel Execution Capability

These are 32-bit instructions, and cannot be used in parallel execution.  (See section 8.3.5, Details
of Contention Due to 32-Bit Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 388 of 484
REJ09B0051-0300

(9)  Memory Store Instructions (MOVMU.L, MOVML.L)

Instruction Types

MOVMU.L Rm,@-R15
MOVML.L Rm,@-R15

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ MA MA MA

Next instruction IF � � � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

These instructions perform saving to the stack.  The pipeline is in the form IF, ID, EX, MA, MA,
MA, ... MA, with MA repeated as often as necessary.  There is no WB stage as there is no return
of data to the register.

Instruction Issuance

If there is an uncompleted instruction in the pipeline when these instructions are decoded,
execution of these instructions will be delayed.
These instructions use the memory access pipeline.

Parallel Execution Capability

These are multi-cycle instructions, and cannot be executed in parallel with a subsequent
instruction.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 389 of 484
REJ09B0051-0300

(10)  PREF Instruction

Instruction Type

PREF @Rm

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after four stages: IF, ID, EX, MA.  There is no WB stage as there is no return of
data to the register.

Instruction Issuance

This instruction uses the memory access pipeline.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 390 of 484
REJ09B0051-0300

8.9.2 Arithmetic Operation Instructions

(1) Inter-Register Arithmetic Operation Instructions
(Excluding Multiply Instructions and DIVU or DIVS Instructions)

Instruction Types

ADD Rm,Rn
ADD #imm,Rn
ADDC Rm,Rn
ADDV Rm,Rn
CMP/EQ #imm,R0
CMP/EQ Rm,Rn
CMP/HS Rm,Rn
CMP/GE Rm,Rn
CMP/HI Rm,Rn
CMP/GT Rm,Rn
CMP/PZ Rn
CMP/PL Rn
CMP/STR Rm,Rn
DIV1 Rm,Rn
DIV0S Rm,Rn
DIV0U
DT Rn
EXTS.B Rm,Rn
EXTS.W Rm,Rn
EXTU.B Rm,Rn
EXTU.W Rm,Rn
NEG Rm,Rn
NEGC Rm,Rn
SUB Rm,Rn
SUBC Rm,Rn
SUBV Rm,Rn
CLIPU.B Rn
CLIPU.W Rn



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 391 of 484
REJ09B0051-0300

CLIP.B Rn
CLIP.W Rn

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after three stages: IF, ID, EX.  In the EX stage, the data operation is completed
via the ALU.

Instruction Issuance

The EXTS.B, EXTS.W, EXTU.B, and EXTU.W instructions use the shifter.
The other instructions do not cause resource contention.

Parallel Execution Capability

With CLIP instructions, CS bit rewrite contention does not occur and parallel execution is
possible.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 392 of 484
REJ09B0051-0300

(2)  Multiply-and-Accumulate Instruction

Instruction Type

MAC.W  @Rm+,@Rn+

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA MA mm mm

Next instruction IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after seven stages: IF, ID, EX, MA, MA, mm, mm.  mm indicates a state in
which the multiplier is operating.

See section 8.7, Contention Due to Multiplier, for general pipeline details.  This instruction has
three execution slots, a latency of five, and four lock states. Detailed examples where there are
consecutive instructions relating to the pipeline of this instruction or the multiplier are given
below.

(a) When a MAC.W instruction is immediately followed by a MAC.W or MAC.L instruction
There is no multiplier contention.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MAC.W @Rm+,@Rn+ IF ID EX MA MA mm mm

MAC.W @Rm+,@Rn+ IF � � ID EX MA MA mm mm
Instruction after next IF � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(b) When a MAC.W instruction is immediately followed by a MULS.W, MULU.W, DMULS.W,
DMULU.W, MUL.L, MULR, STS (register). STS.L (memory), or LDS (register) instruction
As the MAC.W instruction locks the multiplier, stalling occurs a further 2-slot interval back.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 393 of 484
REJ09B0051-0300

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MAC.W @Rm+,@Rn+ IF ID EX MA MA mm mm

STS MACL,Rn IF � � � � ID EX WB
Instruction after next IF � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(c) When a MAC.W instruction is immediately followed by an LDS.L (memory) instruction
Execution is delayed for a MAC execution state (3-slot) interval.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MAC.W @Rm+,@Rn+ IF ID EX MA MA mm mm

LDS.L  @Rn+,MACL IF � � � ID EX MA WB
Instruction after next IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Instruction Issuance

This instruction uses the memory access pipeline.
This instruction uses the multiplier.
This instruction is executed even if the multiplier is locked.
This instruction locks the multiplier for a 4-slot interval.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.   
(See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 394 of 484
REJ09B0051-0300

(3)  Double-Precision Multiply-and-Accumulate Instruction

Instruction Type

MAC.L @Rm+,@Rn+

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA MA mm mm mm

Next instruction IF � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after eight stages: IF, ID, EX, MA, MA, mm, mm, mm.  mm indicates a state in
which the multiplier is operating.

See section 8.7, Contention Due to Multiplier, for general pipeline details.  This instruction has
four execution slots, a latency of six, and five lock states. Detailed examples where there are
consecutive instructions relating to the pipeline of this instruction or the multiplier are given
below.

(a) When a MAC.L instruction is immediately followed by a MAC.L or MAC.W instruction
There is no multiplier contention.

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MAC.L @Rm+,@Rn+ IF ID EX MA MA mm mm mm

MAC.L @Rm+,@Rn+ IF � � � ID EX MA MA mm mm mm
Instruction after next IF � � � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 395 of 484
REJ09B0051-0300

(b) When a MAC.L instruction is immediately followed by a MULS.W, MULU.W, DMULS.L,
DMULU.L, MUL.L, MULR, STS (register). STS.L (memory), or LDS (register) instruction
As the MAC.L instruction locks the multiplier, stalling occurs a further 2 states back.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MAC.L @Rm+,@Rn+ IF ID EX MA MA mm mm mm

STS MACH,Rn IF � � � � � ID EX WB
Instruction after next IF � � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(c) When a MAC.L instruction is immediately followed by an LDS.L (memory) instruction
Execution is delayed for a MAC execution state (4-slot) interval.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MAC.L @Rm+,@Rn+ IF ID EX MA MA mm mm mm

LDS.L @Rn+,MACL IF � � � � ID EX MA WB
Instruction after next IF � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Instruction Issuance

This instruction uses the memory access pipeline.
This instruction uses the multiplier.
This instruction is executed even if the multiplier is locked.
This instruction locks the multiplier for a 5-slot interval.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.
(See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 396 of 484
REJ09B0051-0300

(4)  Multiply Instructions

Instruction Types

MULS.W Rm,Rn
MULU.W Rm,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID mm mm

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after four stages: IF, ID, mm, mm.  mm indicates a state in which the multiplier
is operating.

See section 8.7, Contention Due to Multiplier, for general pipeline details.  These instructions
have one execution slot, a latency of two, and one lock state. Detailed examples where there are
consecutive instructions relating to the pipeline of this instruction or the multiplier are given
below.

(a) When a MULS.W instruction is immediately followed by a MAC.W or MAC.L instruction
There is no multiplier contention.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MULS.W IF ID mm mm

MAC.W IF ID EX MA MA mm mm
Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 397 of 484
REJ09B0051-0300

(b) When a MULS.W instruction is immediately followed by a MULS.W, MULU.W, DMULS.L,
DMULU.L, MUL.L, MULR, STS (register). STS.L (memory), or LDS (register) instruction
As the MULS.W instruction locks the multiplier, parallel execution is not possible.

↔ ↔ ↔ ↔ ↔ ↔ Slots

MULS.W Rm,Rn IF ID mm mm

STS MACL,Rn IF � ID EX WB
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(c) When a MULS.W instruction is immediately followed by an LDS.L (memory) instruction
Parallel execution with the MULS.W instruction is not possible, as it locks the multiplier.

↔ ↔ ↔ ↔ ↔ ↔ Slots

MULS.W Rm,Rn IF ID mm mm

LDS.L @Rn+,MACL IF � ID EX MA WB
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Instruction Issuance

These instructions use the multiplier.
These instructions lock the multiplier for a 1-slot interval.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 398 of 484
REJ09B0051-0300

(5)  Double-Precision Multiply Instructions

Instruction Types

DMULS.L Rm,Rn
DMULU.L Rm,Rn
MUL.L Rm,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID mm mm mm

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after five stages: IF, ID, mm, mm, mm.  mm indicates a state in which the
multiplier is operating.

See section 8.7, Contention Due to Multiplier, for general pipeline details.  These instructions
have two execution slots, a latency of three, and two lock states. Detailed examples where there
are consecutive instructions relating to the pipeline of this instruction or the multiplier are given
below.

(a) When a MUL.L instruction is immediately followed by a MAC.W or MAC.L instruction
There is no multiplier contention.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MUL.L Rm,Rn IF ID mm mm mm

MAC.L @Rm+,@Rn+ IF � ID EX MA MA mm mm mm
Instruction after next IF � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 399 of 484
REJ09B0051-0300

(b) When a MUL.L instruction is immediately followed by a MULS.W, MULU.W, DMULS.L,
DMULU.L, MUL.L, MULR, STS (register). STS.L (memory), or LDS (register) instruction
As the MUL.L instruction locks the multiplier, stalling occurs a further 2-slot interval back.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MUL.L Rm,Rn IF ID mm mm mm

STS MACL,Rn IF � � ID EX WB
Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(c) When a MUL.L instruction is immediately followed by an LDS.L (memory) instruction
Execution is delayed during execution of MUL.L (two cycles).

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MUL.L IF ID mm mm mm

LDS.L @Rn+,MACL IF � � ID EX MA WB
Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Instruction Issuance

These instructions use the multiplier.
These instructions lock the multiplier for a 2-slot interval.

Parallel Execution Capability

These are multi-cycle instructions, and cannot be executed in parallel with a subsequent
instruction.  (See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 400 of 484
REJ09B0051-0300

(6)  Double-Precision Multiply Instruction (General Register Return)

Instruction Type

MULR R0,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID mm mm mm WB

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after six stages: IF, ID, mm, mm, mm, WB.  mm indicates a state in which the
multiplier is operating.

See section 8.7, Contention Due to Multiplier, for general pipeline details.  This instruction has
two execution slots, a latency of four, and two lock states. Detailed examples where there are
consecutive instructions relating to the pipeline of this instruction or the multiplier are given
below.

(a) When a MULR instruction is immediately followed by a MAC.W or MAC.L instruction
There is no multiplier contention.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MULR R0,Rn IF ID mm mm mm WB

MAC.L @Rm+,@Rn+ IF � ID EX MA MA mm mm mm
Instruction after next IF � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 401 of 484
REJ09B0051-0300

(b) When a MULR instruction is immediately followed by a MULS.W, MULU.W, DMULS.L,
DMULU.L, MUL.L, MULR, STS (register). STS.L (memory), or LDS (register) instruction
As the MULR instruction locks the multiplier, stalling occurs a further 1-slot interval back.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MULR R0,Rn IF ID mm mm mm WB

MULR R0,Rn IF � � ID mm mm mm WB
Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(c) When a MULR instruction is immediately followed by an STS (register) or STS.L (memory)
instruction
As the MULR instruction locks the multiplier, and multiplication result read path contention
occurs, stalling occurs a further 2-slot interval back.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MULR R0,Rn IF ID mm mm mm WB

STS MACL,Rn IF � � � ID EX WB
Instruction after next IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(d) When a MULR instruction is immediately followed by an LDS.L (memory) instruction
Execution is delayed for a MULR instruction execution state (2-slot) interval.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

MULR R0,Rn IF ID mm mm mm WB

LDS.L @Rn+,MACL IF � � ID EX MA WB
Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Instruction Issuance

This instruction uses the multiplier.
This instruction locks the multiplier for a 2-slot interval.
This instruction uses the multiplication result read path.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.
(See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 402 of 484
REJ09B0051-0300

(7)  DIVU Instruction

Instruction Type

DIVU R0,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ EX EX

Next instruction IF � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after 36 stages: IF, ID, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX,
EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX,
EX. Data operations are completed using the ALU in the EX stages.

Instruction Issuance

This instruction uses the shift pipeline.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 403 of 484
REJ09B0051-0300

(8)  DIVS Instruction

Instruction Type

DIVS R0,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ EX EX

Next instruction IF � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after 38 stages: IF, ID, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX,
EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX,
EX, EX, EX. Data operations are completed using the ALU in the EX stages.

Instruction Issuance

This instruction do not cause resource contention.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 404 of 484
REJ09B0051-0300

8.9.3 Logical Operation Instructions

(1)  Register-Register Logical Operation Instructions

Instruction Types

AND Rm,Rn
AND #imm,R0
NOT Rm,Rn
OR Rm,Rn
OR #imm,R0
TST Rm,Rn
TST #imm,R0
XOR Rm,Rn
XOR #imm,R0

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after three stages: IF, ID, EX.  In the EX stage, the data operation is completed
via the ALU.

Instruction Issuance

These instructions do not cause resource contention.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 405 of 484
REJ09B0051-0300

(2)  Memory Logical Operation Instructions

Instruction Types

AND.B #imm,@(R0,GBR)
OR.B #imm,@(R0,GBR)
XOR.B #imm,@(R0,GBR)

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA EX MA

Next instruction IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after six stages: IF, ID, EX, MA, EX, MA.

Instruction Issuance

These instructions use the memory access pipeline.

Parallel Execution Capability

These are multi-cycle instructions, and cannot be executed in parallel with a subsequent
instruction.  (See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 406 of 484
REJ09B0051-0300

(3)  Memory Logical Operation Instructions

Instruction Type

TST.B   #imm,@(R0,GBR)

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA EX

Next instruction IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after five stages: IF, ID, EX, MA, EX.

Instruction Issuance

This instruction uses the memory access pipeline.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.
(See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 407 of 484
REJ09B0051-0300

(4)  TAS Instruction

Instruction Type

TAS.B   @Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA EX MA

Next instruction IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after six stages: IF, ID, EX, MA, EX, MA.

Instruction Issuance

This instruction uses the memory access pipeline.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 408 of 484
REJ09B0051-0300

(5)  Register-Register Bit Operation Instructions

Instruction Types

BLD #imm3,Rn
BSET #imm3,Rn
BCLR #imm3,Rn
BST #imm3,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after three stages: IF, ID, EX.  In the EX stage, the data operation is completed
via the ALU.

Instruction Issuance

These instructions do not cause resource contention.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 409 of 484
REJ09B0051-0300

(6)  Memory-Tbit Logical Operation Instructions

Instruction Types

BAND.B #imm3,@(disp12,Rn)
BANDNOT.B #imm3,@(disp12,Rn)
BLD.B #imm3,@(disp12,Rn)
BLDNOT.B #imm3,@(disp12,Rn)
BOR.B #imm3,@(disp12,Rn)
BORNOT.B #imm3,@(disp12,Rn)
BXOR.B #imm3,@(disp12,Rn)

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA EX

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after five stages: IF, ID, EX, MA, EX.

Instruction Issuance

These instructions use the memory access pipeline.

Parallel Execution Capability

These are 32-bit instructions, and cannot be used in parallel execution.  If the instruction following
this instruction is BAND.B, BANDNOT.B, BLD.B, BLDNOT.B, BOR.B, BORNOT.B, or
BXOR, the final step is executed in parallel with the instruction that follows. Parallel execution
with the final step is not possible with any other instruction. (See section 8.3.5, Details of
Contention Due to 32-Bit Instruction).



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 410 of 484
REJ09B0051-0300

↔ ↔ ↔ ↔ ↔ ↔ Slots

BAND.B #imm,@(disp12,Rn) IF ID EX MA EX

BOR.B #imm,@(disp12,Rn) IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
BANDNOT.B #imm,@(disp12,Rn) IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

↔ ↔ ↔ ↔ ↔ ↔ Slots

BAND.B #imm,@(disp12,Rn) IF ID EX MA EX

ADD Rm,Rn IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

↔ ↔ ↔ ↔ ↔ ↔ Slots

BAND.B #imm,@(disp12,Rn) IF ID EX MA EX

ROTCL IF � � ID EX

BAND.B #imm,@(disp12,Rn) IF � � ID EX

Instruction after next IF � � � �



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 411 of 484
REJ09B0051-0300

(7)  Memory Bit Operation Instructions

Instruction Types

BCLR.B #imm3,@(disp12,Rn)
BSET.B #imm3,@(disp12,Rn)
BST.B #imm3,@(disp12,Rn)

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA EX MA

Next instruction IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after six stages: IF, ID, EX, MA, EX, MA.

Instruction Issuance

These instructions use the memory access pipeline.

Parallel Execution Capability

These are 32-bit instructions, and cannot be used in parallel execution.  (See section 8.3.5, Details
of Contention Due to 32-Bit Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 412 of 484
REJ09B0051-0300

8.9.4 Shift Instructions

Instruction Types

ROTL Rn
ROTR Rn
ROTCL Rn
ROTCR Rn
SHAL Rn
SHAR Rn
SHLL Rn
SHLR Rn
SHLL2 Rn
SHLR2 Rn
SHLL8 Rn
SHLR8 Rn
SHLL16 Rn
SHLR16 Rn
SHAD Rm,Rn
SHLD Rm,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after three stages: IF, ID, EX.  In the EX stage, the data operation is completed
via the shifter.

Instruction Issuance

These instructions use the shift pipeline.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 413 of 484
REJ09B0051-0300

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 414 of 484
REJ09B0051-0300

8.9.5 Branch Instructions

(1)  Conditional Branch Instructions

Instruction Types

BF label
BT label

Pipeline

(a) When condition is met

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Next instruction IF � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)
Instruction after next IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)
Second instruction
after next

IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)

Branch destination
instruction

� IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(b) When condition is not met

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Next instruction IF ID EX
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Second instruction
after next

� � �

Operation

The pipeline ends after three stages: IF, ID, EX.  Condition determination is performed in the ID
stage.  Conditional branch instructions are not delayed branch instructions.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 415 of 484
REJ09B0051-0300

(a) When condition is met
The branch destination address is calculated in the EX stage.  All overrun-fetched instructions
up to that point are discarded.  The branch destination instruction fetch is started from the slot
following the instruction A EX stage slot.

(b) When condition is not met
If it is determined in the ID stage that the condition is not met, processing proceeds with
nothing done in the EX stage.  The next instruction is fetched and executed.
A typical pipeline is shown below.
If the preceding instruction is a CMP instruction, execution is delayed by 1 cycle.

↔ ↔ ↔ ↔ ↔ Slots

CMP IF ID EX

BF IF � ID EX
Branch destination IF

If the preceding instruction is a single-precision FCMP instruction, execution is delayed by 2
cycles.

↔ ↔ ↔ ↔ ↔ ↔ Slots

FCMP/single IF DF E1 E2

BF IF � � ID EX
Branch destination IF

If the preceding instruction is a double-precision FCMP instruction, execution is delayed by 3
cycles.

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

FCMP/double IF DF E1 E1 E2

BF IF � � � ID EX
Branch destination IF

Instruction Issuance

These instructions use the branch pipeline.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 416 of 484
REJ09B0051-0300

(2)  Delayed Conditional Branch Instructions

Instruction Types

BF/S label
BT/S label

Pipeline

(a) When condition is met

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Delay slot IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)
Second instruction
after next

IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)

Branch destination
instruction

� IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(b) When condition is not met

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Next instruction IF ID EX
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Second instruction
after next

IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after three stages: IF, ID, EX.  Condition determination is performed in the ID
stage.  Interrupts are not accepted in the delay slot.

(a) When condition is met
The branch destination address is calculated in the EX stage.  All overrun-fetched instructions
up to that point are discarded.  The branch destination instruction fetch is started from the slot
following the instruction A EX stage slot.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 417 of 484
REJ09B0051-0300

(b) When condition is not met
If it is determined in the ID stage that the condition is not met, processing proceeds with
nothing done in the EX stage.  The next instruction is fetched and executed.
A typical pipeline is shown below.
If the preceding instruction is a CMP instruction, execution is delayed by 1 cycle.

↔ ↔ ↔ ↔ ↔ Slots

CMP IF ID EX

BF/S IF � ID EX
Delay slot IF � � ID

If the preceding instruction is a single-precision FCMP instruction, execution is delayed by 2
cycles.

↔ ↔ ↔ ↔ ↔ ↔ Slots

FCMP/single IF DF E1 E2

BF/S IF � � ID EX
Delay slot IF � � � ID

If the preceding instruction is a double-precision FCMP instruction, execution is delayed by 3
cycles.

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

FCMP/double IF DF E1 E1 E2

BF/S IF � � � ID EX
Delay slot IF � � � � ID

Instruction Issuance

These instructions use the branch pipeline.
If an instruction fetch has not yet been performed for the instruction (delay slot) immediately
following one of these instructions, execution of that instruction is delayed.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 418 of 484
REJ09B0051-0300

(3) Unconditional Branch Instructions

Instruction Types

BRA label
BRAF Rm
BSR label
BSRF Rm
JMP @Rm
JSR @Rm
RTS

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Delay slot IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)
Second instruction
after next

IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)

Branch destination
instruction

� IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after three stages: IF, ID, EX.  Unconditional branch instructions are delayed
branch instructions.
The branch destination address is calculated in the EX stage.  The instruction after the
unconditional branch instruction (instruction A) � that is, the delay slot instruction � is not
discarded after being fetched, as with a conditional branch instruction, but is executed.  However,
the ID stage of this delay slot instruction is stalled for a 2-slot interval.  The branch destination
instruction fetch is started from the slot following the instruction A EX stage slot.
Interrupts are not accepted in the delay slot.

Instruction Issuance

These instructions use the branch pipeline.
If an instruction fetch has not yet been performed for the instruction (delay slot) immediately
following one of these instructions, execution of that instruction is delayed.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 419 of 484
REJ09B0051-0300

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 420 of 484
REJ09B0051-0300

(4)  No Delay Unconditional Branch Instructions

Instruction Types

JSR/N @Rm
RTS/N
RTV/N Rm

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Next instruction IF � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)
Instruction after next IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)
Second instruction
after next

IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)

Branch destination
instruction

� IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after three stages: IF, ID, EX.  Condition determination is performed in the ID
stage.  Conditional branch instructions are not delayed branch instructions.  The branch destination
address is calculated in the EX stage.  All overrun-fetched instructions up to that point are
discarded.  The branch destination instruction fetch is started from the slot following the
instruction A EX stage slot.

Instruction Issuance

These instructions use the branch pipeline.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 421 of 484
REJ09B0051-0300

(5)  Unconditional Branch Instructions with No Delay (JSR/N @@(disp,TBR))

Instruction Types

JSR/N @@(disp,TBR)

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA EX

Next instruction IF � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)
Instruction after next IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)
Second instruction
after next

IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ (Fetched but discarded)

Branch destination
instruction

� � � IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after five stages: IF, ID, EX, MA, EX. Condition determination is performed in
the ID stage. This is not a delayed branch instruction. The branch destination address is calculated
in the second EX stage. All overrun-fetched instructions up to that point are discarded. The branch
destination instruction fetch is started from the slot following the slot with the second EX of
instruction A.

Instruction Issuance

This instruction uses the branch pipeline.

This instruction uses the memory access pipeline.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 422 of 484
REJ09B0051-0300

8.9.6 System Control Instructions

(1)  System Control ALU Instructions

Instruction Types

CLRT
LDC Rm,GBR
LDC Rm,TBR
LDC Rm,VBR
LDS Rm,PR
NOP
SETT
STC GBR,Rn
STC TBR,Rn
STC VBR,Rn
STS PR,Rn
NOTT

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after three stages: IF, ID, EX.  In the EX stage, the data operation is completed
via the ALU.

Instruction Issuance

These instructions do not cause resource contention.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 423 of 484
REJ09B0051-0300

(2)  System Control ALU Instruction

Instruction Type

LDC Rm,SR

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX EX EX

Next instruction IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after five stages: IF, ID, EX, EX, EX.  In the first EX stage, the data operation is
completed via the ALU.

Instruction Issuance

This instruction does not cause resource contention.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 424 of 484
REJ09B0051-0300

(3)  System Control ALU Instruction

Instruction Type

STC SR,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX EX

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after four stages: IF, ID, EX, EX.  In the second EX stage, the data operation is
completed via the ALU.

Instruction Issuance

No particular comments
A typical pipeline when performing a CS bit read is shown below.

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots
CLIP IF ID EX

STC IF � ID EX EX

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 425 of 484
REJ09B0051-0300

(4)  LDC.L and LDS.L Instructions

Instruction Types

LDC.L @Rm+,GBR
LDC.L @Rm+,VBR
LDS.L @Rm+,PR

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA WB

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after five stages: IF, ID, EX, MA, WB.

Instruction Issuance

These instructions use the memory access pipeline.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 426 of 484
REJ09B0051-0300

(5)  LDC.L Instruction

Instruction Type

LDC.L @Rm+,SR

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA EX EX EX

Next instruction IF � � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after seven stages: IF, ID, EX, MA, EX, EX, EX.

Instruction Issuance

This instruction uses the memory access pipeline.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 427 of 484
REJ09B0051-0300

(6)  STC.L Instructions

Instruction Types

STC.L GBR,@-Rn
STC.L VBR,@-Rn
STS.L PR,@-Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after four stages: IF, ID, EX, MA.

Instruction Issuance

These instructions use the memory access pipeline.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 428 of 484
REJ09B0051-0300

(7)  STC.L Instruction

Instruction Type

STC.L SR, @-Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX EX MA

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after five stages: IF, ID, EX, EX, MA.

Instruction Issuance

This instruction uses the memory access pipeline.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.

Although this instruction uses the memory access pipeline, parallel execution is possible if the
preceding instruction is a single-cycle memory access instruction.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 429 of 484
REJ09B0051-0300

(8)  Register →→→→ MAC Transfer Instructions

Instruction Types

CLRMAC
LDS Rm,MACH
LDS Rm,MACL

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID mm mm

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after four stages: IF, ID, mm, mm.  mm indicates a state in which the multiplier
is operating.

See section 8.7, Contention Due to Multiplier, for general pipeline details.  These instructions
have one execution slot, a latency of two, and one lock state. Detailed examples where there are
consecutive instructions relating to the pipeline of this instruction or the multiplier are given
below.

(a) When a CLRMAC instruction is immediately followed by a MAC.W or MAC.L instruction
There is no multiplier contention.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

CLRMAC IF ID mm mm

MAC.W @Rm+,@Rn+ IF ID EX MA MA mm mm
Instruction after next IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 430 of 484
REJ09B0051-0300

(b) When a CLRMAC instruction is immediately followed by a MULS.W, MULU.W, DMULS.L,
DMULU.L, MUL.L, MULR, STS (register). STS.L (memory), or LDS (register) instruction
Parallel execution with the CLRMAC instruction is not possible, as it locks the multiplier.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

CLRMAC IF ID mm mm

STS MACL,Rn IF � ID EX WB
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(c) When a CLRMAC instruction is immediately followed by an LDS.L (memory) instruction
Execution is delayed for a CLRMAC instruction execution state (1-slot) interval.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

CLRMAC IF ID mm mm

LDS.L @Rn+,MACL IF � ID EX MA WB
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Instruction Issuance

These instructions use the multiplier.

These instructions lock the multiplier for a 1-slot interval.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 431 of 484
REJ09B0051-0300

(9)  Memory →→→→ MAC Transfer Instructions

Instruction Types

LDS.L @Rm+,MACH
LDS.L @Rm+,MACL

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA WB

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after five stages: IF, ID, EX, MA, WB.

See section 8.7, Contention Due to Multiplier, for general pipeline details.  This instruction has
one execution slot, a latency of three, and two lock states. Detailed examples where there are
consecutive instructions relating to the pipeline of this instruction or the multiplier are given
below.

(a) When an LDS.L instruction is immediately followed by a MAC.W or MAC.L instruction
There is no multiplier contention, but there is memory access contention, with 1-cycle stalling.

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

LDS.L @Rm+,MACH IF ID EX MA WB

MAC.W @Rm+,@Rn+ IF � ID EX MA MA mm mm
Instruction after next IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 432 of 484
REJ09B0051-0300

(b) When an LDS.L instruction is immediately followed by a MULS.W, MULU.W, DMULS.L,
DMULU.L, MUL.L, MULR, STS (register). STS.L (memory), or LDS (register) instruction
As the LDS.L instruction locks the multiplier, stalling occurs a further 1-slot interval back.

↔ ↔ ↔ ↔ ↔ ↔ Slots

LDS.L @Rm+,MACH IF ID EX MA WB

STS MACL,Rn IF � � ID EX WB
Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(c) When an LDS.L instruction is immediately followed by an LDS.L (memory) instruction
Execution is delayed for an LDS.L instruction execution state (1-slot) interval.

↔ ↔ ↔ ↔ ↔ Slots

LDS.L @Rn+,MACH IF ID EX MA WB

LDS.L @Rn+,MACL IF � ID EX MA WB
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Instruction Issuance

These instructions use the memory access pipeline.
These instructions use the multiplier.
These instructions are executed if there is a remaining multiplication lock interval of 1.
These instructions lock the multiplier for a 2-slot interval.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 433 of 484
REJ09B0051-0300

(10)  MAC →→→→ Register Transfer Instructions

Instruction Types

STS MACH,Rn
STS MACL,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX WB

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after four stages: IF, ID, EX, WB.

See section 8.7, Contention Due to Multiplier, for general pipeline details.  These instructions
have one execution slot, a latency of two, and zero lock state. Detailed examples where there are
consecutive instructions relating to the pipeline of this instruction or the multiplier are given
below.

(a) When an STS instruction is immediately followed by a MAC.W or MAC.L instruction
There is no multiplier contention.

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

STS MACH,Rn IF ID EX WB

MAC.W @Rm+,@Rn+ IF ID EX MA MA mm mm
Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 434 of 484
REJ09B0051-0300

(b) When an STS instruction is immediately followed by a MULS.W, MULU.W, DMULS.L,
DMULU.L, MUL.L, MULR, STS (register). STS.L (memory), or LDS (register) instruction
As the STS instruction does not lock the multiplier, parallel execution is performed.

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

STS MACH,Rn IF ID mm mm WB

MUL.L Rm,Rn IF ID mm mm mm
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(c) When an STS instruction is immediately followed by a STS (register) or STS.L (memory)
instruction.
Parallel execution is not possible, as contention occurs with the multiplication result read bus.

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

STS MACH,Rn IF ID EX WB

STS MACL,Rn IF � ID EX WB
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(d) When an STS instruction is immediately followed by an LDS.L (memory) instruction
Parallel execution is performed.

There is no multiplier contention.

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

STS MACH,Rn IF ID EX WB

LDS.L @Rn+,MACL IF ID EX MA WB
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Instruction Issuance

These instructions use the multiplier, but do not lock it.
These instructions use the multiplication result read path.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 435 of 484
REJ09B0051-0300

(11)  MAC →→→→ Memory Transfer Instructions

Instruction Types

STS.L MACH,@-Rn
STS.L MACL,@-Rn

Pipeline

↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after four stages: IF, ID, EX, MA.

See section 8.7, Contention Due to Multiplier, for general pipeline details.  These instructions
have one execution slot, a latency of two, and zero lock state. Detailed examples where there are
consecutive instructions relating to the pipeline of this instruction or the multiplier are given
below.

(a) When an STS.L instruction is immediately followed by a MAC.W or MAC.L instruction
There is no multiplier contention, but there is memory access contention, with 1-cycle stalling.

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

STS.L MACH,@-Rn IF ID EX MA

MAC.W @Rm+,@Rn+ IF � ID EX MA MA mm mm
Instruction after next IF � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 436 of 484
REJ09B0051-0300

(b) When an STS.L instruction is immediately followed by a MULS.W, MULU.W, DMULS.L,
DMULU.L, MUL.L, MULR, STS (register). STS.L (memory), or LDS (register) instruction
As the STS.L instruction does not lock the multiplier, parallel execution is performed.

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

STS.L MACL,@-Rn IF ID EX MA

MUL.L Rm,Rn IF ID mm mm
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(c) When an STS.L instruction is immediately followed by a STS (register) or STS.L (memory)
instruction.
Parallel execution is not possible, as contention occurs with the multiplication result read bus.

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

STS.L MACH,@-Rn IF ID EX MA

STS.L MACL,@-Rn IF � ID EX MA
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

(d) When an STS.L instruction is immediately followed by an LDS.L (memory) instruction
Memory access pipeline contention occurs and parallel execution is not possible.

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

STS.L MACH,@-Rn IF ID EX MA

LDS.L @Rn+,MACL IF � ID EX MA WB
Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Instruction Issuance

These instructions use the memory access pipeline.
These instructions use the multiplier, but do not lock it.
These instructions use the multiplication result read path.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 437 of 484
REJ09B0051-0300

(12)  RTE Instruction

Instruction Type

RTE

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA MA EX EX EX

Delay slot IF � � � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Branch destination IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after eight stages: IF, ID, EX, MA, MA, EX, EX, EX.  RTE is a delayed branch
instruction.  The ID stage of the delay slot instruction is stalled for a 5-slot interval.  The IF stage
of the branch destination instruction is started from the slot after the second MA stage of RTE.

Instruction Issuance

This instruction does not cause resource contention.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 438 of 484
REJ09B0051-0300

(13)  RESBANK Instruction

Instruction Type

RESBANK

Pipeline

• When B0 == 0
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX EX EX EX EX EX EX EX EX

Next instruction IF � � � � � � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

• When B0 == 1
↔ ↔ ↔ ↔ ↔ ↔ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA MA MA ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ MA MA MA WB

Next instruction IF � � � � � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The operation is different when the BO bit is 0 and when the BO bit is 1.

When the BO bit is 0, restoration from a bank is performed.  The pipeline comprises IF and ID
followed by EX, EX, EX, EX, EX, EX, EX (nine repetitions of EX), and ends after 11 stages.
During this time, register restoration from the bank is performed.

When the BO bit is 1, restoration from the stack is performed.  The pipeline comprises IF, ID, and
EX, followed by MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA,
MA, MA, MA, MA, (19 repetitions of MA), followed by WB, and ends after 23 stages.

Instruction Issuance

When the BO bit is 0, this instruction does not cause resource contention.
When the BO bit is 1, this instruction uses the memory access pipeline.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.
(See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 439 of 484
REJ09B0051-0300

(14)  LDBANK Instruction

Instruction Type

LDBANK @Rm,R0

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX EX EX EX EX EX

Next instruction IF � � � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after eight stages: IF, ID, EX, EX, EX, EX, EX, EX.

Instruction Issuance

This instruction does not cause resource contention.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.
(See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 440 of 484
REJ09B0051-0300

(15)  STBANK Instruction

Instruction Type

STBANK R0,@Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX EX EX EX EX EX EX

Next instruction IF � � � � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � � � � � � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after nine stages: IF, ID, EX, EX, EX, EX, EX, EX, EX.

Instruction Issuance

This instruction does not cause resource contention.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.
(See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 441 of 484
REJ09B0051-0300

(16)  TRAP Instruction

Instruction Type

TRAPA #imm

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX EX EX MA MA MA

Next instruction IF � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Branch destination IF

Operation

The pipeline ends after eight stages: IF, ID, EX, EX, EX, MA, MA, MA.  A TRAP instruction is
not a delayed branch instruction.  The IF stage of the branch destination instruction is started from
the slot containing the third MA of the TRAP instruction.

Instruction Issuance

This instruction uses the memory access pipeline.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 442 of 484
REJ09B0051-0300

(17)  SLEEP Instruction

Instruction Type

SLEEP

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

SLEEP IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ EX EX

Next instruction IF � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅

Operation

The pipeline ends after seven stages: IF, ID, EX, MA, EX, EX, EX.

After a SLEEP instruction is executed, sleep mode or standby mode is entered.

Instruction Issuance

This instruction uses the memory access pipeline.

Parallel Execution Capability

This is a multi-cycle instruction, and cannot be executed in parallel with a subsequent instruction.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 443 of 484
REJ09B0051-0300

8.9.7 Exception Handling

(1)  Interrupt Exception Handling

Instruction Type

Interrupt exception handling

Pipeline

• No banking
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Interrupt IF ID EX EX MA MA MA

Next instruction IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Branch destination IF ID

• Banking, no overflow
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Interrupt IF ID EX EX MA MA MA MA

Next instruction IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Branch destination IF ID

• Banking and overflow
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Interrupt IF ID EX EX MA MA MA ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ MA

Next instruction IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Branch destination IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ID

Operation

An interrupt is accepted in the ID stage of an instruction, and processing from that ID stage
onward is replaced by an exception handling sequence.

Interrupt handling operations are different when there is no banking, when there is banking, and
when there is banking and overflow.

When there is no banking, the pipeline ends after seven stages: IF, ID, EX, EX, MA, MA, MA.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 444 of 484
REJ09B0051-0300

When there is banking and no overflow, saving to the bank is performed automatically.  The
pipeline ends after eight stages: IF, ID, EX, EX, MA, MA, MA, EX.

When there is banking and overflow, registers saved to the bank are automatically restored, and
the BO bit is set to 1.  The pipeline ends after 27 stages: IF, ID, EX, EX, MA, MA, MA, EX, MA,
MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA, MA.
After the first two stages there are two repetitions of EX, three repetitions of MA, one EX, and 19
repetitions of MA.

Interrupt exception handling is not a delayed branch.  The IF stage of the branch destination
instruction is started from the slot containing the third MA stage of the interrupt exception
handling.

Interrupt sources comprise external interrupt request pins such as NMI, a user break, and interrupts
by on-chip peripheral modules.

Interrupt Acceptance

Interrupt exception handling is not accepted in a delay slot.

If a multi-cycle instruction is currently being executed, interrupt exception handling is not
accepted until after execution of that instruction is completed.  However, a DIVU or DIVS
instruction can be canceled during execution, allowing the interrupt to be accepted.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 445 of 484
REJ09B0051-0300

(2)  Address Error Exception Handling

Instruction Type

Address error exception handling

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Address error
exception handling

IF ID EX EX MA MA MA

Next instruction IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Branch destination IF ID

Operation

An address error is accepted in the ID stage of an instruction, and processing from that ID stage
onward is replaced by the address error exception handling sequence.

The pipeline ends after seven stages: IF, ID, EX, EX, MA, MA, MA.  Address error exception
handling is not a delayed branch.  The IF stage of the branch destination instruction is started from
the slot containing the last MA stage of the address error exception handling.

Address error generation sources comprise those related to an instruction fetch, and those related
to a data read or write.  See the hardware manual for details of generation sources.

Address Error Exception Handling Acceptance

Address error exception handling is not accepted in a delay slot.

If a multi-cycle instruction is currently being executed, address error exception handling is not
accepted until after execution of that instruction is completed.  However, a DIVU or DIVS
instruction can be canceled during execution, allowing address error exception handling to be
accepted.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 446 of 484
REJ09B0051-0300

(3)  Illegal Instruction Exception Handling

Instruction Type

Illegal instruction exception handling

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Illegal instruction IF ID EX EX MA MA MA

Next instruction IF � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF � ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Branch destination IF ID

Operation

An illegal instruction is accepted in the ID stage of an instruction, and processing from that ID
stage onward is replaced by the illegal instruction exception handling sequence.  The pipeline ends
after seven stages: IF, ID, EX, EX, MA, MA, MA.  Illegal instruction exception handling is not a
delayed branch.

Address error generation sources comprise those related to general illegal instructions and those
related to slot illegal instructions.  When undefined code located other than in the slot immediately
after a delayed branch instruction (called the delay slot) is decoded, general illegal instruction
exception handling is performed.  When undefined core located in the delay slot is decoded, or an
instruction that modifies the program counter, and a 32-bit instruction, and a RESBANK
instruction, and a DIVU or DIVS instruction are located in the delay slot and decoded, slot illegal
instruction handling is performed.

General illegal instruction exception handling is also performed if an FPU instruction or FPU-
related CPU instruction is executed while the FPU is in the module stopped state.

The IF stage of the branch destination instruction is started from the slot containing the last MA
stage of the illegal instruction exception handling.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 447 of 484
REJ09B0051-0300

(4)  FPU Exception Handling

Instruction Type

FPU exception handling

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

FPU exception
handling

IF ID EX EX MA MA MA

Next instruction IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Instruction after next IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅
Branch destination IF ID

Operation

An FPU execution is accepted in the ID stage of an instruction, and processing from that ID stage
onward is replaced by the FPU exception handling sequence.

The pipeline ends after six stages: IF, ID, EX, MA, MA, MA.  FPU exception handling is not a
delayed branch.  The IF stage of the branch destination instruction is started from the slot
containing the last MA stage of the FPU exception handling.

Pipeline Processing of Instructions from Generation to Acceptance of FPU Exceptions

The FPU makes the instruction at which the execution occurred an NOP instruction, and also
makes FPU instructions (excluding FCMP instructions) from occurrence of the execution to the
instruction that accepts the exception NOP instructions.  Consequently, FPU registers are not
updated by instructions during this interval.

With FPU-related CPU instructions, as above, FPU registers are not updated (NOP operation is
performed), but CPU registers are updated.

CPU instructions are not made NOP instructions, and operate as usual.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 448 of 484
REJ09B0051-0300

8.9.8 Floating-Point Instructions and FPU-Related CPU Instructions

(1)  FPUL Load Instructions

Instruction Types

LDS Rm,FPUL
LDS.L @Rm+,FPUL

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA : CPU pipeline
IF DF EX NA SF : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Operation

The CPU pipeline ends after four stages � IF, ID, EX, MA � and the FPU pipeline after five stages
� IF, DF, EX, NA, SF.  Contention may occur if an instruction that reads FPUL is located within
the 3 instructions following one of these instructions.

Instruction Issuance

These instructions use the FPU load/store pipeline and memory access pipeline.
There is no contention between an LDS instruction and a CPU memory read instruction.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 449 of 484
REJ09B0051-0300

(2)  FPSCR Load Instructions

Instruction Types

LDS Rm,FPSCR
LDS.L @Rm+,FPSCR

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA : CPU pipeline
IF DF EX NA SF : FPU pipeline

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Operation

The CPU pipeline ends after four stages � IF, ID, EX, MA � and the FPU pipeline after five stages
� IF, DF, EX, NA, SF.  A subsequent FPU-related instruction is stalled for the next 3 cycles.

Instruction Issuance

These instructions use the FPU load/store pipeline.
The LDS.L instruction also uses the memory access pipeline.
If an FPU arithmetic operation instruction is still performing calculation, these instructions are
kept waiting until that instruction ends.

Parallel Execution Capability

These instructions cannot be executed in parallel with FPU instructions or FPU-related CPU
instructions.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 450 of 484
REJ09B0051-0300

(3)  FPUL Store Instruction (STS)

Instruction Type

STS FPUL,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX WB : CPU pipeline
IF DF EX NA : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Operation

The CPU pipeline ends after four stages � IF, ID, EX, WB � and the FPU pipeline after four stages
� IF, DF, EX, NA.  Contention may occur if an instruction that uses the destination of this
instruction is located within the 3 instructions following this instruction.

Instruction Issuance

This instruction uses the multiplication result read path.

This instruction uses the FPU load/store pipeline and memory access pipeline.

There is no contention with a CPU memory write instruction.

If FPUL is waiting for the result of an FPU arithmetic operation, the latency of the previous
instruction is reduced by 2.  See section 8.6, Contention Due to FPU, for details.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 451 of 484
REJ09B0051-0300

(4)  FPUL Store Instruction (STS.L)

Instruction Type

STS.L FPUL,@-Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA : CPU pipeline
IF DF EX NA : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Operation

The CPU pipeline ends after four stages � IF, ID, EX, MA � and the FPU pipeline after four stages
� IF, DF, EX, NA.

Instruction Issuance

This instruction uses the FPU load/store pipeline and memory access pipeline.

If FPUL is waiting for the result of an FPU arithmetic operation, the latency of the previous
instruction is reduced by 1.  See section 8.6, Contention Due to FPU, for details.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 452 of 484
REJ09B0051-0300

(5)  FPSCR Store Instruction (STS)

Instruction Type

STS FPSCR,Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX WB : CPU pipeline
IF DF EX NA : FPU pipeline

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Operation

The CPU pipeline ends after four stages � IF, ID, EX, MA, WB � and the FPU pipeline after four
stages � IF, DF, EX, NA.

Contention may occur if an instruction that uses the destination of this instruction is located within
the 3 instructions following this instruction.

Instruction Issuance

This instruction uses the multiplication result read path.

If an FPU arithmetic operation instruction is still performing calculation, this instruction is kept
waiting until that instruction ends.

Parallel Execution Capability

This instruction cannot be executed in parallel with FPU instructions or FPU-related CPU
instructions.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 453 of 484
REJ09B0051-0300

(6)  FPSCR Store Instruction (STS.L)

Instruction Type

STS.L FPSCR,@-Rn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA : CPU pipeline
IF DF EX NA : FPU pipeline

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Operation

The CPU pipeline ends after four stages � IF, ID, EX, MA � and the FPU pipeline after four stages
� IF, DF, EX, NA.

Instruction Issuance

This instruction uses the FPU load/store pipeline and memory access pipeline.

If an FPU arithmetic operation instruction is still performing calculation, this instruction is kept
waiting until that instruction ends.

Parallel Execution Capability

This instruction cannot be executed in parallel with FPU instructions or FPU-related CPU
instructions.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 454 of 484
REJ09B0051-0300

(7) Some floating-point register-register transfer instructions, floating-point register-
immediate instructions, and floating-point operation instructions

Instruction Types

FLDS FRm,FPUL
FMOV FRm,FRn
FSTS FPUL,FRn
FLDI0 FRn
FLDI1 FRn
FABS FRn
FNEG FRn
FABS DRn
FNEG DRn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX : CPU pipeline
IF DF EX NA SF : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF E1 E2 SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF E1 E2 E3 : FPU pipeline

Operation

The CPU pipeline ends after three stages � IF, ID, EX � and the FPU pipeline after five stages �
IF, DF, EX, NA, SF.  Contention does not occur even if one of these instructions is immediately
followed by an instruction that reads the destination of that instruction.

Instruction Issuance

These instructions use the FPU load/store pipeline.

Parallel Execution Capability

These are zero-latency instructions.  Parallel execution is possible even if one of these instructions
is executed as a preceding instruction and the succeeding instruction uses FRn, FPUL.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 455 of 484
REJ09B0051-0300

(8) Double-Precision Floating-Point Register to Register Data Transfer Instructions

Instruction Types

FMOV DRm,DRn

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX EX : CPU pipeline
IF DF EX EX NA SF : FPU pipeline

Next instruction IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ DF E1 E2 SF : FPU pipeline

Instruction after next IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ DF E1 E2 SF : FPU pipeline

Operation

The CPU pipeline ends after four stages � IF, ID, EX, EX � and the FPU pipeline after six stages �
IF, DF, EX, EX, NA, SF.  Contention does not occur even if one of these instructions is
immediately followed by an instruction that reads the destination of that instruction.

Instruction Issuance

This instruction uses the FPU load/store pipeline.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 456 of 484
REJ09B0051-0300

(9) FSCHG Instruction

Instruction Types

FSCHG

Pipeline

↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX : CPU pipeline
IF DF EX NA SF : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF E1 E2 SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF E1 E2 SF : FPU pipeline

Operation

The CPU pipeline ends after three stages � IF, ID, EX � and the FPU pipeline after five stages �
IF, DF, EX, NA, SF.  Contention does not occur even if one of these instructions is immediately
followed by an instruction that reads the destination of that instruction.

Instruction Issuance

This instruction uses the FPU load/store pipeline.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 457 of 484
REJ09B0051-0300

(10)  Floating-Point Register Load Instructions

Instruction Types

FMOV.S @Rm,FRn
FMOV.S @Rm+,FRn
FMOV.S @(R0,Rm),FRn
FMOV.D @Rm,DRn
FMOV.D @Rm,DRn
FMOV.D @(R0,Rm),DRn

Pipeline

• Single-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA : CPU pipeline
IF DF EX NA SF : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF E1 E2 SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF E1 E2 SF : FPU pipeline

• Double-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA MA : CPU pipeline
IF DF EX EX NA SF : FPU pipeline

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF E1 E2 SF : FPU pipeline

Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF E1 E2 SF : FPU pipeline



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 458 of 484
REJ09B0051-0300

Operation

• Single-Precision
The CPU pipeline ends after four stages � IF, ID, EX, MA � and the FPU pipeline after five
stages � IF, DF, EX, NA, SF.  Contention may occur if an instruction that reads the destination
of one of these instructions is located within the 3 instructions following that instruction.

• Double-Precision
The CPU pipeline ends after five stages � IF, ID, EX, MA, MA � and the FPU pipeline after
six stages � IF, DF, EX, EX, NA, SF.  Contention may occur if an instruction that reads the
destination of one of these instructions is located within the 5 instructions following that
instruction.

Instruction Issuance

These instructions use the FPU load/store pipeline and memory access pipeline.

Parallel Execution Capability

FMOV.D instruction is a multi-cycle instruction, and cannot be executed in parallel with a
subsequent instruction.  (See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 459 of 484
REJ09B0051-0300

(11)  Floating-Point Register Load Instruction (12-Bit Displacement)

Instruction Type

FMOV.S @(disp12,Rm),FRn
FMOV.D @(disp12,Rm),DRn

Pipeline

• Single-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA : CPU pipeline
IF DF EX NA SF : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF EX NA SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF E1 E2 SF : FPU pipeline

• Double-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA MA : CPU pipeline
IF DF EX EX NA SF : FPU pipeline

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF E1 E2 SF : FPU pipeline

Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF E1 E2 SF : FPU pipeline

Operation

• Single-Precision
The CPU pipeline ends after four stages � IF, ID, EX, MA � and the FPU pipeline after five
stages � IF, DF, EX, NA, SF.  Contention may occur if an instruction that reads the destination
of this instruction is located within the 3 instructions following this instruction.

• Double-Precision
The CPU pipeline ends after five stages � IF, ID, EX, MA, MA � and the FPU pipeline after
six stages � IF, DF, EX, EX, NA, SF.  Contention may occur if an instruction that reads the
destination of this instruction is located within the 3 instructions following this instruction.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 460 of 484
REJ09B0051-0300

Instruction Issuance

These instructions use the FPU load/store pipeline and memory access pipeline.

Parallel Execution Capability

This is a 32-bit instruction, and cannot be used in parallel execution.  (See section 8.3.5, Details of
Contention Due to 32-Bit Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 461 of 484
REJ09B0051-0300

(12)  Floating-Point Register Store Instructions

Instruction Types

FMOV.S FRm,@Rn
FMOV.S FRm,@-Rn
FMOV.S FRm,@(R0,Rn)
FMOV.D DRm,@Rn
FMOV.D DRm,@-Rn
FMOV.D DRm,@(R0,Rn)

Pipeline

• Single-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA : CPU pipeline
IF DF EX NA : FPU pipeline

Next instruction IF EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF E1 E2 SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF E1 E2 SF : FPU pipeline

• Double-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA MA : CPU pipeline
IF DF EX EX NA : FPU pipeline

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF E1 E2 SF : FPU pipeline

Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF E1 E2 SF : FPU pipeline



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 462 of 484
REJ09B0051-0300

Operation

• Single-Precision
The CPU pipeline ends after four stages � IF, ID, EX, MA � and the FPU pipeline after four
stages � IF, DF, EX, NA.

• Double-Precision
The CPU pipeline ends after five stages � IF, ID, EX, MA, MA � and the FPU pipeline after
five stages � IF, DF, EX, EX, NA.

Instruction Issuance

These instructions use the FPU load/store pipeline and memory access pipeline.

Parallel Execution Capability

FMOV.D instruction is a multi-cycle instruction, and cannot be executed in parallel with a
subsequent instruction.  (See section 8.3.4, Details of Contention Due to Multi-Cycle Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 463 of 484
REJ09B0051-0300

(13)  Floating-Point Register Store Instruction (12-Bit Displacement)

Instruction Type

FMOV.S FRm,@(disp12,Rn)
FMOV.D DRm,@(disp12,Rn)

Pipeline

• Single-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA : CPU pipeline
IF DF EX NA : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF E1 E2 SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF EX NA SF : FPU pipeline

• Double-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX MA MA : CPU pipeline
IF DF EX EX NA : FPU pipeline

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF E1 E2 SF : FPU pipeline

Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF E1 E2 SF : FPU pipeline

Operation

• Single-Precision
The CPU pipeline ends after four stages � IF, ID, EX, MA � and the FPU pipeline after four
stages � IF, DF, EX, NA.

• Double-Precision
The CPU pipeline ends after five stages � IF, ID, EX, MA, MA � and the FPU pipeline after
five stages � IF, DF, EX, EX, NA.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 464 of 484
REJ09B0051-0300

Instruction Issuance

These instructions use the FPU load/store pipeline and memory access pipeline.

Parallel Execution Capability

This is a 32-bit instruction, and cannot be used in parallel execution. (See section 8.3.5, Details of
Contention Due to 32-Bit Instruction.)



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 465 of 484
REJ09B0051-0300

(14)  Floating-Point Operation Instructions (Excluding FDIV, FSQRT, FLOAT, and FTRC)

Instruction Types

FADD FRm,FRn
FMAC FR0,FRm,FRn
FMUL FRm,FRn
FSUB FRm,FRn
FADD DRm,DRn
FMUL DRm,DRn
FSUB DRm,DRn

Pipeline

• Single-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX : CPU pipeline
IF DF E1 E2 SF : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF EX NA SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF EX NA SF : FPU pipeline

• Double-Precision
↔↔↔↔↔↔↔↔↔↔↔Slots

Instruction A IF ID EX : CPU pipeline
IF DF E1 E1 E1 E1 E1 E1 E2 SF : FPU pipeline

Next instruction IF ID EX MA WB : CPU pipeline
IF DF EX NA SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF EX NA SF : FPU pipeline



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 466 of 484
REJ09B0051-0300

Operation

• Single-Precision
The CPU pipeline ends after three stages � IF, ID, EX � and the FPU pipeline after five stages
� IF, DF, E1, E2, SF.  Contention may occur if an instruction that reads the destination of one
of these instructions is located within the 5 instructions following that instruction.

• Double-Precision
The CPU pipeline ends after three stages � IF, ID, EX � and the FPU pipeline after 10 stages �
IF, DF, E1, E1, E1, E1, E1, E1, E2, SF.  Contention may occur if an instruction that reads the
destination of one of these instructions is located within the 15 instructions following that
instruction.

Instruction Issuance

These instructions use the FPU arithmetic operation pipeline.  See section 8.6, Contention Due to
FPU, for details of contention.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 467 of 484
REJ09B0051-0300

(15) Floating-Point Operation Instructions (FLOAT, FTRC) and FCNVSD, FCNVDS
Instructions

Instruction Types

FLOAT FPUL,FRn
FTRC DRm,FPUL
FLOAT FPUL,DRn
FTRC DRm,FPUL
FCNVSD
FCNVDS

Pipeline

• Single-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX : CPU pipeline
IF DF E1 E2 SF : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF EX NA SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF E1 E2 SF : FPU pipeline

• Double-Precision
↔↔↔↔↔↔↔↔↔↔↔Slots

Instruction A IF ID EX : CPU pipeline
IF DF E1 E1 E2 SF : FPU pipeline

Next instruction IF ID EX MA WB : CPU pipeline
IF DF EX NA SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF EX NA SF : FPU pipeline



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 468 of 484
REJ09B0051-0300

Operation

• Single-Precision
The CPU pipeline ends after three stages � IF, ID, EX � and the FPU pipeline after five stages
� IF, DF, E1, E2, SF.  Contention may occur if an instruction that reads the destination of one
of these instructions is located within the 5 instructions following that instruction.

• Double-Precision
The CPU pipeline ends after three stages � IF, ID, EX � and the FPU pipeline after six stages �
IF, DF, E1, E1, E2, SF.  Contention may occur if an instruction that reads the destination of
one of these instructions is located within the 7 instructions following that instruction.

Instruction Issuance

These instructions use the FPU arithmetic operation pipeline.  See section 8.6, Contention Due to
FPU, for details of contention.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 469 of 484
REJ09B0051-0300

(16)  Floating-Point Operation Instructions (FDIV)

Instruction Types

FDIV FRm,FRn
FDIV DRm,DRn

Pipeline

• Single-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX : CPU pipeline

IF DF E1 ED ED ED ED ED ED ED ED E1 E2 SF : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline

IF DF EX NA SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline

IF DF EX NA SF : FPU pipeline

• Double-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX : CPU pipeline

IF DF E1 E1 ED ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ED E1 E1 E1 E2 SF : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline

IF DF EX NA SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline

IF DF EX NA SF : FPU pipeline



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 470 of 484
REJ09B0051-0300

Operation

• Single-Precision
The CPU pipeline ends after three stages � IF, ID, EX � and the FPU pipeline after 14 stages �
IF, DF, E1, ED, ED, ED, ED, ED, ED, ED, ED, E1, E2, SF.  That is to say, after one E1 stage
has been performed, the ED stage is repeated 8 times, followed by E1, E2, and SF.

• Double-Precision
The CPU pipeline ends after three stages � IF, ID, EX � and the FPU pipeline after 27 stages �
IF, DF, E1, E1, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED,
ED, E1, E1, E1, E2, SF.  That is to say, after the E1 stage has been performed twice, the ED
stage is repeated 18 times, followed by E1, E1, E1, E2, and SF.

The contention described in section 8.6, Contention Due to FPU, occurs.  If there is an
overlapping instruction that accesses the FDIV result register in the FDIV pipeline, that instruction
is kept waiting until execution of the FDIV instruction is finished.  Stages from E1 onward are
stalled until the end of FDIV execution, and subsequent instructions are also subject to stalling.
Therefore, if a floating-point instruction that uses the FDIV result register, or an FPU-related CPU
instruction, is not located within 21 instructions immediately after the FDIV instruction in the case
of single-precision, or 49 instructions in the case of double-precision, a CPU instruction or another
FPU instruction can be executed during that interval, enabling performance to be improved.

Instruction Issuance

These instructions use the FPU arithmetic operation pipeline.  See section 8.6, Contention Due to
FPU, for details of contention.

The ED stages of these instructions operate in states, without regard to slots.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 471 of 484
REJ09B0051-0300

(17)  Floating-Point Operation Instructions (FSQRT)

Instruction Types

FSQRT FRn
FSQRT DRn

Pipeline

• Single-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX : CPU pipeline

IF DF E1 ED ED ED ED ED ED ED E1 E2 SF : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline

IF DF EX NA SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline

IF DF EX NA SF : FPU pipeline

• Double-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX : CPU pipeline

IF DF E1 E1 ED ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ED E1 E1 E1 E2 SF : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline

IF DF EX NA SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline

IF DF EX NA SF : FPU pipeline



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 472 of 484
REJ09B0051-0300

Operation

• Single-Precision
The CPU pipeline ends after three stages � IF, ID, EX � and the FPU pipeline after 13 stages �
IF, DF, E1, ED, ED, ED, ED, ED, ED, ED, E1, E2, SF.  That is to say, after one E1 stage has
been performed, the ED stage is repeated 7 times, followed by E1, E2, and SF.

• Double-Precision
The CPU pipeline ends after three stages � IF, ID, EX � and the FPU pipeline after 26 stages �
IF, DF, E1, E1, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED, ED,
E1, E1, E1, E2, SF.  That is to say, after the E1 stage has been performed twice, the ED stage
is repeated 17 times, followed by E1, E1, E1, E2, and SF.

The contention described in section 8.6, Contention Due to FPU, occurs.  If there is an
overlapping instruction that accesses the FSQRT result register in the FSQRT pipeline, that
instruction is kept waiting until execution of the FSQRT instruction is finished.  Stages from E1
onward are stalled until the end of FSQRT execution, and subsequent instructions are also subject
to stalling.  Therefore, if a floating-point instruction that uses the FSQRT result register, or an
FPU-related CPU instruction, is not located within 19 instructions immediately after the FSQRT
instruction in the case of single-precision, or 47 instructions in the case of double-precision, a
CPU instruction or another FPU instruction can be executed during that interval, enabling
performance to be improved.

Instruction Issuance

These instructions use the FPU arithmetic operation pipeline.  See section 8.6, Contention Due to
FPU, for details of contention.

The ED stages of these instructions operate in states, without regard to slots.

Parallel Execution Capability

No particular comments



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 473 of 484
REJ09B0051-0300

(18)  Floating-Point Compare Instructions

Instruction Types

FCMP/EQ FRm,FRn
FCMP/GT FRm,FRn
FCMP/EQ DRm,DRn
FCMP/GT DRm,DRn

Pipeline

• Single-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX : CPU pipeline
IF DF E1 E2 : FPU pipeline

Next instruction IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF EX NA SF : FPU pipeline

Instruction after next IF ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF DF E1 E2 SF : FPU pipeline

• Double-Precision
↔ ↔ ↔ ↔ ↔ ↔ ↔ Slots

Instruction A IF ID EX EX : CPU pipeline
IF DF E1 E1 E2 : FPU pipeline

Next instruction IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF EX NA SF : FPU pipeline

Instruction after next IF � ID EX ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : CPU pipeline
IF � DF EX NA SF : FPU pipeline



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 474 of 484
REJ09B0051-0300

Operation

• Single-Precision
The CPU pipeline ends after three stages � IF, ID, EX � and the FPU pipeline after four stages
� IF, DF, E1, E2.  As the T bit is checked in E2, an instruction that references the T bit
immediately afterward is stalled for 2 cycles.

FCMP IF ID EX : CPU pipeline
IF DF E1 E2 : FPU pipeline

BT IF � � ID EX : CPU pipeline
IF � � DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Operation

• Double-Precision
The CPU pipeline ends after four stages � IF, ID, EX, EX � and the FPU pipeline after five
stages � IF, DF, E1, E1, E2.  As the T bit is checked in E2, an instruction that references the T
bit immediately afterward is stalled for 3 cycles.

FCMP IF ID EX : CPU pipeline
IF DF E1 E1 E2 : FPU pipeline

BT IF � � � ID EX : CPU pipeline
IF � � � DF ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ : FPU pipeline

Instruction Issuance

These instructions use the FPU arithmetic operation pipeline.

Parallel Execution Capability

Parallel execution of a double-precision FCMP instruction and the following instruction is not
possible.



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 475 of 484
REJ09B0051-0300

8.10 Simple Method of Calculating Required Number of Clock Cycles

A simple method of calculating required number of clock cycles is described below. This method
provides a rough approximation, but it allows the user to calculate the number of clock cycles
needed to execute the target instruction string.

The calculation is based on the following rules.

(1) The instructions are assumed to already have been fetched, so fetch time is not taken into
consideration.

(2) The 32-bit instructions operate in �execution state� cycles.

(3) If resource contention occurs, the previously issued instructions operate in �execution state�
cycles. Parallel execution of subsequent instructions is not possible.

(4) If the result from the previously issued instruction is used by the instruction that immediately
follows, the calculation assumes that the previously issued instruction will require �latency�
cycles.

(5) If the result from the previously issued instruction is not used by the instruction that
immediately follows, the calculation assumes that the previously issued instruction will require
�execution state� cycles.

(6) Correction for parallel execution is performed in simplified form as a compensation item.

There are a large number of exceptional cases, so the calculation method introduced here cannot
be 100% accurate. It does allow the user to obtain a rough idea of the number of clock cycles that
will be required, however. Examples are provided below.

1. Counting Latency Cycles

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Cycles

MOV.L    @ R1, R0 ID EX MA WB 2

ADD        # imm, R0 � � ID EX 1

MOV.L    R0, @ R1 � ID EX MA

The result from MOV.L, which precedes ADD, will be used, so the calculation assumes that
MOV.L will require �latency� cycles (two cycles) to execute. The next MOV.L instruction uses
the result from ADD, so the calculation assumes that the ADD instruction will require �latency�
execution (one cycle).



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 476 of 484
REJ09B0051-0300

2. Counting Execution State Cycles

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Cycles

MOV.L    @ R1, R0 ID EX MA WB 1→0

ADD        # imm, R2 ID EX 1

MOV.L    R3, @ R4 ID EX MA

In this case, the result from the previously issued instruction is not used by the instructions that
follow it, so the instructions execute in parallel provided no resource contention occurs. The
number of cycles required by each instruction to execute are calculated in the �execution state.�
When the preceding instruction uses one execution state cycle, the following instruction executes
in parallel. When parallel execution takes place, the number of cycles required by the preceding
instruction is calculated as �execution state� minus one. This serves as a simplified compensation.
(This compensation appears as the final item in the equation introduced below.)

3. If Resource Contention Occurs

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Cycles

MOV.L    @ R1, R0 ID EX MA WB 1

MOV.L    @ R3, R2 ID EX MA WB 1

MOV.L    @ R5, R4 ID EX MA WB

If resource contention occurs, parallel execution is not possible. The execution of each instruction
requires �execution state� cycles.

4. Instructions Using More Than One Execution State

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Cycles

AND.B   # imm, @(R0,GBR) ID EX MA EX 3→2

ADD       # imm, R1 ID EX 1

BAND.B # imm, @(disp12,R2) ID EX MA EX 3

ROTCL ID

For instructions using more than one execution state, the calculation assumes that the number of
remaining states is reduced one by one until only one remains, at which point parallel execution
with the subsequent instructions is possible. In this case, the number of cycles required for
execution is calculated as �execution state� minus one if parallel execution with subsequent
instructions takes place, and as �execution state� if no parallel execution takes place. This serves



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 477 of 484
REJ09B0051-0300

as a simplified compensation. (This compensation appears as the final item in the equation
introduced below.)

Based on the above, the number of cycles necessary to execute the entire instruction string is as
summarized below, in extremely simplified terms. If some portions of the string have
dependencies and others do not, separate calculations should be made for each portion and the
results added together.

• If Dependencies Exist Between Instructions
Required number of cycles = sum total of �latency� cycles of all instructions

• If No Dependencies Exist Between Instructions
Required number of cycles = sum total of �execution state� cycles of all instructions� (total
number of instructions � number of instructions that cannon be executed in parallel) ÷ 2

In this case, �number of instructions that cannon be executed in parallel� is the total number of
instructions that cannot be executed in parallel due to resource contention (in particular, memory
access instructions that immediately follow another memory access instruction), instructions using
more than one execution state, and 32-bit instructions
The final item compensates for the effects of parallel execution by reducing the number of
required cycles for the preceding instructions.

Example: If Dependencies Exist Between Instructions

  BAND.B
  ROTCL
  BAND.B
  ROTCL
The �latency� cycles for all instructions are added together, producing a total of eight cycles.

Example: If No Dependencies Exist Between Instructions

  ADD # imm, R0
  BAND.B # imm, @(disp12,R2)
  MULR R4, R0
 ROTCL R5

Required number of cycles = 1 + 3 + 2 + 1 � (4 � 2) ÷ 2
= 7 � 1 = 6 cycles



Section 8   Pipeline Operation

Rev. 3.00  Jul 08, 2005  page 478 of 484
REJ09B0051-0300



Appendix A   SH-2A/SH2A-FPU Parallel Execution

Rev. 3.00  Jul 08, 2005  page 479 of 484
REJ09B0051-0300

Appendix A   SH-2A/SH2A-FPU Parallel Execution

The table below can be used to determine whether or not parallel execution is supported,
depending on the type of arithmetic unit used. In the case of instructions that belong to more than
one category, parallel execution is supported if all of the applicable intersections are marked with
a circle (o).

Second instruction

(1) BR (2) MR (3) MW (4) MF (5) ML (6) MU (7) SF (8) FL (9) FP (10) FC (11) EX

(1) BR × o o o o o o o o o o
(2) MR o × × o o o o o o o o
(3) MW o × × × o o o o o o o
(4) MF o o × × o o o o o o o
(5) ML o o o o × o o o o o o
(6) MU o o o o o × o o o o o
(7) SF o o o o o o × o o o o
(8) FL o o o o o o o × o × o
(9) FP o o o o o o o o × × o
(10) FC × × × × × × × × × × ×

First
instruction

(11) EX o o o o o o o o o o o

Classifi-
cation of

First
Instruction

Classifi-
cation of
Second

Instruction

Instruction

BR BR BF disp BF/S disp BT disp

BT/S disp BSR disp BSRF Rm

BRA disp BRAF Rm JMP @Rm

JSR @Rm JSR/N @Rm RTS

RTS/N RTV/N Rm TRAPA #imm

MR MR LDC.L @Rm+,GBR LDC.L @Rm+,VBR LDS.L @Rm+,PR

MOV.B @(disp,GBR),R0 MOV.B @(disp,Rm),R0 MOV.B @(R0,Rm),Rn

MOV.B @Rm,Rn MOV.B @Rm+,Rn MOV.B @-Rm,R0

MOV.B @(disp12,Rm),Rn MOV.W @(disp,GBR),R0 MOV.W @(disp,Rm),R0

MOV.W @(R0,Rm),Rn MOV.W @Rm,Rn MOV.W @Rm+,Rn

MOV.W @-Rm,R0 MOV.W @(disp12,Rm),Rn MOV.W @(disp,PC),Rn

MOV.L @(disp,GBR),R0 MOV.L @(disp,Rm),Rn MOV.L @(R0,Rm),Rn

MOV.L @Rm,Rn MOV.L @Rm+,Rn MOV.L @-Rm,R0

MOV.L @(disp12,Rm),Rn MOV.L @(disp,PC),Rn MOVU.B @(disp12,Rm),Rn

MOVU.W @(disp12,Rm),Rn MOVML.L @R15+,Rn MOVMU.L @R15+,Rn

PREF @Rn



Appendix A   SH-2A/SH2A-FPU Parallel Execution

Rev. 3.00  Jul 08, 2005  page 480 of 484
REJ09B0051-0300

Classifi-
cation of

First
Instruction

Classifi-
cation of
Second

Instruction

Instruction

MW MR AND.B #imm,@(R0,GBR) BCLR.B #imm3,@(disp12,Rn) BSET.B #imm3,@(disp12,Rn)

BST.B #imm3,@(disp12,Rn) OR.B #imm,@(R0,GBR) STC.L SR,@-Rn

TAS.B @Rn XOR.B #imm,@(R0,GBR)

MW MW MOV.B R0,@(disp,GBR) MOV.B R0,@(disp,Rn) MOV.B Rm,@(R0,Rn)

MOV.B Rm,@Rn MOV.B Rm,@-Rn MOV.B R0,@Rn+

MOV.B Rm,@(disp12,Rn) MOV.W R0,@(disp,GBR) MOV.W R0,@(disp,Rn)

MOV.W Rm,@(R0,Rn) MOV.W Rm,@Rn MOV.W Rm,@-Rn

MOV.W R0,@Rn+ MOV.W Rm,@(disp12,Rn) MOV.L R0,@(disp,GBR)

MOV.L Rm,@(disp,Rn) MOV.L Rm,@(R0,Rn) MOV.L Rm,@Rn

MOV.L Rm,@-Rn MOV.L R0,@Rn+ MOV.L Rm,@(disp12,Rn)

MOVML.L Rm,@-R15 MOVMU.L Rm,@-R15 STC.L GBR,@-Rn

STC.L VBR,@-Rn STS.L PR,@-Rn

ML ML STS MACH,Rn STS MACL,Rn

MU MU CLRMAC DMULS.L Rm,Rn DMULU.L Rm,Rn

MUL.L Rm,Rn MULS.W Rm,Rn MULU.W Rm,Rn

LDS Rm,MACL LDS Rm,MACH

ML,MU ML MULR R0,Rn

SF SF DIVU R0,Rn EXTS.B Rm,Rn EXTS.W Rm,Rn

EXTU.B Rm,Rn EXTU.W Rm,Rn ROTCL Rn

ROTCR Rn ROTL Rn ROTR Rn

SHAD Rm,Rn SHAL Rn SHAR Rn

SHLD Rm,Rn SHLL Rn SHLL16 Rn

SHLL2 Rn SHLL8 Rn SHLR Rn

SHLR16 Rn SHLR2 Rn SHLR8 Rn

SWAP.B Rm,Rn SWAP.W Rm,Rn XTRCT Rm,Rn

FL FL FABS DRn FABS FRn FLDI0 FRn

FLDI1 FRn FLDS FRm,FPUL FMOV DRm,DRn

FMOV FRm,FRn FNEG DRn FNEG FRn

FSTS FPUL,FRn

ML,FL ML,FL STS FPUL,Rn

FP FP FADD DRm,DRn FADD FRm,FRn FCMP/EQ FRm,FRn

FCMP/GT FRm,FRn FCNVDS DRm,FPUL FCNVSD FPUL,DRn

FDIV DRm,DRn FDIV FRm,FRn FLOAT FPUL,DRn

FLOAT FPUL,FRn FMAC FR0,FRm,FRn FMUL DRm,DRn

FMUL FRm,FRn FSCHG FSQRT DRn

FSQRT FRn FSUB DRm,DRn FSUB FRm,FRn

FTRC DRm,FPUL FTRC FRm,FPUL



Appendix A   SH-2A/SH2A-FPU Parallel Execution

Rev. 3.00  Jul 08, 2005  page 481 of 484
REJ09B0051-0300

Classifi-
cation of

First
Instruction

Classifi-
cation of
Second

Instruction

Instruction

FC FC FCMP/EQ DRm,DRn FCMP/GT DRm,DRn

ML,FC ML,FC STS FPSCR,Rn

EX EX ADD #imm,Rn ADD Rm,Rn ADDC Rm,Rn

ADDV Rm,Rn AND #imm,R0 AND Rm,Rn

BCLR #imm3,Rn BLD #imm3,Rn BSET #imm3,Rn

BST #imm3,Rn CLRT CMP/EQ #imm,R0

CMP/EQ Rm,Rn CMP/GE Rm,Rn CMP/GT Rm,Rn

CMP/HI Rm,Rn CMP/HS Rm,Rn CMP/PL Rn

CMP/PZ Rn CMP/STR Rm,Rn CLIPS.B Rn

CLIPS.W Rn CLIPU.B Rn CLIPU.W Rn

DIV0S Rm,Rn DIV0U DIVS R0,Rn

DIV1 Rm,Rn DT Rn LDC Rm,GBR

LDC Rm,SR LDC Rm,TBR LDC Rm,VBR

LDS Rm,PR LDBANK @Rm,R0 MOV #imm,Rn

MOV Rm,Rn MOVA @(disp,PC),R0 MOVI20 #imm20,Rn

MOVI20S #imm20,Rn MOVT Rn MOVRT Rn

NEG Rm,Rn NEGC Rm,Rn NOP

NOT Rm,Rn NOTT OR #imm,R0

OR Rm,Rn SETT STC GBR,Rn

STC SR,Rn STC TBR,Rn STC VBR,Rn

STS PR,Rn STBANK R0,@Rn SUB Rm,Rn

SUBC Rm,Rn SUBV Rm,Rn TST #imm,R0

TST Rm,Rn XOR #imm,R0 XOR Rm,Rn

RESBANK(BO==0)

MR,MU MR,MU LDS.L @Rm+,MACH LDS.L @Rm+,MACL

MW.ML MW,ML STS.L MACH,@-Rn STS.L MACL,@-Rn

MW,FL MW,FL FMOV.S @(R0,Rm),FRn FMOV.S @Rm,FRn FMOV.S @Rm+,FRn

FMOV.S @(disp12,Rm),FRn FMOV.S FRm,@(R0,Rn) FMOV.S FRm,@-Rn

FMOV.S FRm,@Rn FMOV.S FRm,@(disp12,Rn) FMOV.D @(R0,Rm),DRn

FMOV.D @Rm,DRn FMOV.D @Rm+,DRn FMOV.D @(disp12,Rm),DRn

FMOV.D DRm,@(R0,Rn) FMOV.D DRm,@-Rn FMOV.D DRm,@Rn

FMOV.D DRm,@(disp12,Rn)

MF,FL MF,FL LDS Rm,FPUL

MF,FC MF,FC LDS Rm,FPSCR

MR,FC MR,FC LDS.L @Rm+,FPSCR LDS.L @Rm+,FPUL

MW,ML,FC MW,ML,FC STS.L FPSCR,@-Rn STS.L FPUL,@-Rn

BR MR JSR/N @@(disp8,TBR)



Appendix A   SH-2A/SH2A-FPU Parallel Execution

Rev. 3.00  Jul 08, 2005  page 482 of 484
REJ09B0051-0300

Classifi-
cation of

First
Instruction

Classifi-
cation of
Second

Instruction

Instruction

MR,MU MR RESBANK(BO==1)

EX MR BAND.B #imm3,@(disp12,Rn) BANDNOT.B #imm3,@(disp12,Rn) BLD.B #imm3,@(disp12,Rn)

BLDNOT.B #imm3,@(disp12,Rn) BOR.B #imm3,@(disp12,Rn) BORNOT.B #imm3,@(disp12,Rn)

BXOR.B #imm3,@(disp12,Rn) LDC.L @Rm+,SR RTE

SLEEP TST.B #imm,@(R0,GBR)

MU MR MAC.W @Rm+,@Rn+ MAC.L @Rm+,@Rn+

� The first and last steps of multi-step instructions are executed in parallel.
� FPU instructions follow the SH4 classifications ((1) LS type, (2) FE type, (3) CO type). The new 32-bit FMOV

instructions belong to the (1) LS type.
� As a rule, 32-bit instructions are executed in parallel if the preceding instruction is a multi-step instruction.

They cannot be executed in parallel with the instructions that follow them. However, pairs of memory-Tbit bit-
manipulation instructions are executed in parallel.

� The MOVMU.L and MOVML.L instructions cannot be executed in parallel with the instructions that follow
them.

� Parallel execution of delayed branch instructions and delayed slots is not supported.

Multi-step instructions:
TRAPA, MOVMU.L, MOVML.L, AND.B, OR.B, TST.B, XOR.B, TAS.B, BCLR.B, BSET.B, BST.B, BAND.B,
BANDNOT.B, BLD.B, BLDNOT.B, BOR.B, BORNOT.B, BXOR.B, MUL.L, DMULS.L, DMULU.L, MULR,
DIVU, DIVS, FCMP/EQ DRm,DRn, FCMP/GT DRm,DRn, LDC Rm,SR, STC SR,Rn, LDC.L @Rm+,SR,
STC.L SR,@-Rn, LDBANK, STBANK, RESBANK, FMOV.D, FMOV DRm,DRn, JSR/N @@(disp,TBR),
SLEEP, RTE, MAC.W, MAC.L

32-bit instructions:
MOVI20, MOVI20S, MOV.B @(disp12,Rm),Rn, MOV.W @(disp12,Rm),Rn, MOV.L @(disp12,Rm),Rn,
MOV.B Rm,@(disp12,Rn), MOV.W Rm,@(disp12,Rn), MOV.L Rm,@(disp12,Rn),MOVU.B, MOVU.W,
FMOV.S @(disp12,Rm),FRn, FMOV.D @(disp12,Rm),DRn, FMOV.S FRm,@(disp12,Rn), FMOV.D
DRm,@(disp12,Rn), BCLR.B, BSET.B, BST.B, BAND.B, BANDNOT.B, BLD.B, BLDNOT.B, BOR.B,
BORNOT.B, BXOR.B

32-bit FMOV instructions:
FMOV.S @(disp12,Rm),FRn, FMOV.D @(disp12,Rm),DRn, FMOV.S FRm,@(disp12,Rn), FMOV.D
DRm,@(disp12,Rn),

Memory-Tbit bit-manipulation instructions:
BAND.B, BANDNOT.B, BLD.B, BLDNOT.B, BOR.B, BORNOT.B, BXOR.B

Delayed branch instructions:
BRA, BSR, BRAF, BSRF, JMP, JSR, RTS, RTE, BT/S, BF/S



Appendix B   Programming Guidelines (Using MOVI20 and MOVI20S)

Rev. 3.00  Jul 08, 2005  page 483 of 484
REJ09B0051-0300

Appendix B   Programming Guidelines
(Using MOVI20 and MOVI20S)

In the SH-2A/SH2A-FPU, the MOVI20 #imm20,Rn and MOVI20S #imm20,Rn instructions
reduce literal access by PC-relative instructions and increase cycle performance. Use of a
declaration of the sort shown below in the assembler is recommended in order to gain these
benefits.

(1)  Using MOVI20

MOVI20 performs sign extension. This instruction can be used to express the range H'00000000
to H'0007FFFF and H'FFF80000 to H'FFFFFFFF.

The following instruction string should be arranged continuously.
MOVI20 #imm20, Rn
Unconditional branch instruction*

Example:
MOVI20 #imm20, Rn
JMP @ Rm

(2) Using MOVI20S

MOVI20S performs sign extension. This instruction can be used with ADD #imm, Rn to express
the range H'00000000 to H'07FFFF7F and H'F7FFFF80 to H'FFFFFFFF.

The following instruction string should be arranged continuously.
MOVI20S #imm20, Rn
ADD#imm, Rn
Unconditional branch instruction*

Example:
MOVI20S#imm20, Rn
ADD#imm, Rn
JMP @ Rm



Appendix B   Programming Guidelines (Using MOVI20 and MOVI20S)

Rev. 3.00  Jul 08, 2005  page 484 of 484
REJ09B0051-0300

Notes: To specify addresses in the range H'07FF FF80�H'07FF FFFF:
MOVI20S #imm20, R0
OR #imm, R0
Unconditional branch instruction*

Alternately, use a 32-bit address read as follows:
MOV.L @(disp, PC), Rn
Unconditional branch instruction*

* Unconditional branch instruction: BRAF Rm, BSRF Rm, JMP @Rm, JSR @Rm,
JSR/N @Rm



Renesas 32-Bit RISC Microcomputer
Software Manual
SH-2A, SH2A-FPU

Publication Date:   1st Edition, March, 2004
                              Rev.3.00, July 08, 2005
Published by:    Sales Strategic Planning Div.
                              Renesas Technology Corp.
Edited by:    Technical Documentation & Information Department 
                              Renesas Kodaira Semiconductor Co., Ltd.

  2005. Renesas Technology Corp. All rights reserved. Printed in Japan.



Sales Strategic Planning Div.    Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger  Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408)  382-7500, Fax: <1> (408)  382-7501 
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628)  585-100, Fax: <44> (1628)  585-900 
Renesas Technology Hong Kong Ltd. 
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong   
Tel: <852> 2265-6688, Fax: <852> 2730-6071
 
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 

Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No.205 Maoming Road (S),  Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> 2-796-3115, Fax: <82> 2-796-2145

Renesas Technology Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510

RENESAS SALES OFFICES

Colophon 3.0



SH-2A, SH2A-FPU
Software Manual


	Cover
	Cautions
	Main Revisions for this Edition
	Contents
	Section 1 Overview
	1.1 Features

	Section 2 Programming Model
	2.1 Data Formats
	2.2 Register Configuration
	2.2.1 General Registers
	2.2.2 Control Registers
	2.2.3 System Registers
	2.2.4 Floating-Point Registers
	2.2.5 Floating-Point System Registers
	2.2.6 Register Banks
	2.2.7 Register Initial Values

	2.3 Data Formats
	2.3.1 Data Format in Registers
	2.3.2 Data Formats in Memory
	2.3.3 Immediate Data Format

	2.4 Processing States

	Section 3 Exception Handling
	3.1 Overview
	3.1.1 Exception Handling Types and Priority
	3.1.2 Exception Handling Operation
	3.1.3 Exception Vector Table

	3.2 Resets
	3.2.1 Types of Reset
	3.2.2 Power-On Reset
	3.2.3 Manual Reset

	3.3 Address Errors
	3.3.1 Address Error Sources
	3.3.2 Address Error Exception Handling

	3.4 RAM Errors
	3.4.1 RAM Error Sources
	3.4.2 RAM Error Exception Handling

	3.5 Register Bank Errors
	3.5.1 Register Bank Error Sources
	3.5.2 Register Bank Error Exception Handling

	3.6 Interrupts
	3.6.1 Interrupt Sources
	3.6.2 Interrupt Priority
	3.6.3 Interrupt Exception Handling

	3.7 Instruction Exceptions
	3.7.1 Types of Instruction Exception
	3.7.2 Trap Instruction
	3.7.3 Slot Illegal Instructions
	3.7.4 General Illegal Instructions
	3.7.5 Integer Division Instructions
	3.7.6 Floating-Point Operation Instructions

	3.8 Cases in Which Exceptions Are Not Accepted
	3.9 Stack Status after Exception Handling
	3.10 Usage Notes
	3.10.1 Stack Pointer (SP) Value
	3.10.2 Vector Base Register (VBR) Value
	3.10.3 Address Errors Occurring in Address Error Exception Handling Stacking


	Section 4 Instruction Features
	4.1 RISC-Type Instruction Set
	4.2 Addressing Modes
	4.3 Instruction Format

	Section 5 Instruction Set
	5.1 Instruction Set by Classification
	5.1.1 Data Transfer Instructions
	5.1.2 Arithmetic Operation Instructions
	5.1.3 Logic Operation Instructions
	5.1.4 Shift Instructions
	5.1.5 Branch Instructions
	5.1.6 System Control Instructions
	5.1.7 Floating-Point Instructions
	5.1.8 FPU-Related CPU Instructions
	5.1.9 Bit Manipulation Instructions


	Section 6 Instruction Descriptions
	6.1 Overview of New Instructions
	6.2 Format of Instruction Descriptions
	6.3 New Instructions
	6.3.1 BAND Bit AND Bit Manipulation Instruction
	6.3.2 BANDNOT Bit ANDNOT Bit Manipulation Instruction
	6.3.3 BCLR Bit CLeaR Bit Manipulation Instruction
	6.3.4 BLD Bit LoaD Bit Manipulation Instruction
	6.3.5 BLDNOT Bit LoaDNOT Bit Manipulation Instruction
	6.3.6 BOR Bit OR Bit Manipulation Instruction
	6.3.7 BORNOT Bit ORNOT Bit Manipulation Instruction
	6.3.8 BSET Bit SET Bit Manipulation Instruction
	6.3.9 BST Bit STore Bit Manipulation Instruction
	6.3.10 BXOR Bit exclusive OR Bit Manipulation Instruction
	6.3.11 CLIPS CLIP as Signed Arithmetic Instruction
	6.3.12 CLIPU CLIP as Unsigned Arithmetic Instruction
	6.3.13 DIVS DIVide as Signed Arithmetic Instruction
	6.3.14 DIVU DIVide as Unsigned Arithmetic Instruction
	6.3.15 FMOV Floating-point MOVe Floating-Point Instruction
	6.3.16 JSR/N Jump to SubRoutine with No delay slot Branch Instruction
	6.3.17 LDBANK LoaD register BANK System Control Instruction
	6.3.18 LDC LoaD to Control register System Control Instruction
	6.3.19 MOV MOVe structure data Data Transfer Instruction
	6.3.20 MOV MOVe reverse stack Data Transfer Instruction
	6.3.21 MOVI20 MOVe Immediate 20bits data Data Transfer Instruction
	6.3.22 MOVI20S MOVe Immediate 20bits data and 8bits Shift left Data Transfer Instruction
	6.3.23 MOVML.L MOVe Multi-register Lower part Data Transfer Instruction
	6.3.24 MOVMU.L MOVe Multi-register Upper part Data Transfer Instruction
	6.3.25 MOVRT MOVe Reverse Tbit Data Transfer Instruction
	6.3.26 MOVU MOVe structure data as Unsigned Data Transfer Instruction
	6.3.27 MULR MULtiply to Register Arithmetic Instruction
	6.3.28 NOTT NOT Tbit Data Transfer Instruction
	6.3.29 PREF PREFetch data to cache Data Transfer Instruction
	6.3.30 RESBANK REStore from registerBANK System Control Instruction
	6.3.31 RTS/N ReTurn from Subroutine with No delay slot Branch Instruction
	6.3.32 RTV/N ReTurn to Value and from subroutine with No delay slot Branch Instruction
	6.3.33 SHAD SHift Arithmetic Dynamically Shift Instruction
	6.3.34 SHLD SHift Logical Dynamically Shift Instruction
	6.3.35 STBANK STore register BANK System Control Instruction
	6.3.36 STC STore Control register System Control Instruction

	6.4 SH-2E CPU Instructions
	6.4.1 ADD ADD Binary Arithmetic Instruction
	6.4.2 ADDC ADD with Carry Arithmetic Instruction
	6.4.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction
	6.4.4 AND AND logical Logical Instruction
	6.4.5 BF Branch if False Branch Instruction
	6.4.6 BF/S Branch if False with delay Slot Branch Instruction
	6.4.7 BRA BRAnch Branch Instruction
	6.4.8 BRAF BRAnch Far Branch Instruction
	6.4.9 BSR Branch to SubRoutine Branch Instruction
	6.4.10 BSRF Branch to SubRoutine Far Branch Instruction
	6.4.11 BT Branch if True Branch Instruction
	6.4.12 BT/S Branch if True with delay Slot Branch Instruction
	6.4.13 CLRMAC CleaR MAC register System Control Instruction
	6.4.14 CLRT CleaR T bit System Control Instruction
	6.4.15 CMP/cond CoMPare conditionally Arithmetic Instruction
	6.4.16 DIV0S DIVide (step 0) as Signed Arithmetic Instruction
	6.4.17 DIV0U DIVide (step 0) as Unsigned Arithmetic Instruction
	6.4.18 DIV1 DIVide 1 step Arithmetic Instruction
	6.4.19 DMULS.L Double-length MULtiply as Signed Arithmetic Instruction
	6.4.20 DMULU.L Double-length MULtiply as Unsigned Arithmetic Instruction
	6.4.21 DT Decrement and Test Arithmetic Instruction
	6.4.22 EXTS EXTend as Signed Arithmetic Instruction
	6.4.23 EXTU EXTend as Unsigned Arithmetic Instruction
	6.4.24 JMP JuMP Branch Instruction
	6.4.25 JSR Jump to SubRoutine Branch Instruction
	6.4.26 LDC LoaD to Control register System Control Instruction
	6.4.27 LDS LoaD to System register System Control Instruction
	6.4.28 MAC.L Multiply and ACcumulate Long Arithmetic Instruction
	6.4.29 MAC.W Multiply and ACcumulate Word Arithmetic Instruction
	6.4.30 MOV MOVe data Data Transfer Instruction
	6.4.31 MOV MOVe immediate data Data Transfer Instruction
	6.4.32 MOV MOVe peripheral Data Data Transfer Instruction
	6.4.33 MOV MOVe structure data Data Transfer Instruction
	6.4.34 MOVA MOVe effective Address Data Transfer Instruction
	6.4.35 MOVT MOVe T bit Data Transfer Instruction
	6.4.36 MUL.L MULtiply Long Arithmetic Instruction
	6.4.37 MULS.W MULtiply as Signed Word Arithmetic Instruction
	6.4.38 MULU.W MULtiply as Unsigned Word Arithmetic Instruction
	6.4.39 NEG NEGate Arithmetic Instruction
	6.4.40 NEGC NEGate with Carry Arithmetic Instruction
	6.4.41 NOP No OPeration System Control Instruction
	6.4.42 NOT NOT-logical complement Logical Instruction
	6.4.43 OR OR logical Logical Instruction
	6.4.44 ROTCL ROTate with Carry Left Shift Instruction
	6.4.45 ROTCR ROTate with Carry Right Shift Instruction
	6.4.46 ROTL ROTate Left Shift Instruction
	6.4.47 ROTR ROTate Right Shift Instruction
	6.4.48 RTE ReTurn from Exception System Control Instruction
	6.4.49 RTS ReTurn from Subroutine Branch Instruction
	6.4.50 SETT SET T bit System Control Instruction
	6.4.51 SHAL SHift Arithmetic Left Shift Instruction
	6.4.52 SHAR SHift Arithmetic Right Shift Instruction
	6.4.53 SHLL SHift Logical Left Shift Instruction
	6.4.54 SHLLn n bits SHift Logical Left Shift Instruction
	6.4.55 SHLR SHift Logical Right Shift Instruction
	6.4.56 SHLRn n bits SHift Logical Right Shift Instruction
	6.4.57 SLEEP SLEEP System Control Instruction
	6.4.58 STC STore Control register System Control Instruction
	6.4.59 STS STore System register System Control Instruction
	6.4.60 SUB SUBtract binary Arithmetic Instruction
	6.4.61 SUBC SUBtract with Carry Arithmetic Instruction
	6.4.62 SUBV SUBtract with (V flag) underflow check Arithmetic Instruction
	6.4.63 SWAP SWAP register halves Data Transfer Instruction
	6.4.64 TAS Test And Set Logical Instruction
	6.4.65 TRAPA TRAP Always System Control Instruction
	6.4.66 TST TeST logical Logical Instruction
	6.4.67 XOR eXclusive OR logical Logical Instruction
	6.4.68 XTRCT eXTRaCT Data Transfer Instruction

	6.5 Floating-Point Instructions and FPU-Related CPU Instructions
	6.5.1 FABS Floating-point ABSolute value Floating-Point Instruction
	6.5.2 FADD Floating-point ADD Floating-Point Instruction
	6.5.3 FCMP Floating-point CoMPare Floating-Point Instruction
	6.5.4 FCNVDS Floating-point CoNVert Double to Single precision Floating-Point Instruction
	6.5.5 FCNVSD Floating-point CoNVert Single to Double precision Floating-Point Instruction
	6.5.6 FDIV Floating-point DIVide Floating-Point Instruction
	6.5.7 FLDI0 Floating-point LoaD Immediate 0.0 Floating-Point Instruction
	6.5.8 FLDI1 Floating-point LoaD Immediate 1.0 Floating-Point Instruction
	6.5.9 FLDS Floating-point LoaD to System register Floating-Point Instruction
	6.5.10 FLOAT Floating-point convert from integer Floating-Point Instruction
	6.5.11 FMAC Floating-point Multiply and ACcumulate Floating-Point Instruction
	6.5.12 FMOV Floating-point MOVe Floating-Point Instruction
	6.5.13 FMUL Floating-point MULtiply Floating-Point Instruction
	6.5.14 FNEG Floating-point NEGate value Floating-Point Instruction
	6.5.15 FSCHG Sz-bit CHanGe Floating-Point Instruction
	6.5.16 FSQRT Floating-point SQuare RooT Floating-Point Instruction
	6.5.17 FSTS Floating-point STore System register Floating-Point Instruction
	6.5.18 FSUB Floating-point SUBtract Floating-Point Instruction
	6.5.19 FTRC Floating-point TRuncate and Convert to integer Floating-Point Instruction
	6.5.20 LDS LoaD to FPU System register System Control Instruction
	6.5.21 STS STore from FPU System register System Control Instruction


	Section 7 Register Banks
	7.1 Overview
	7.2 Register Banks and Bank Control Registers
	7.2.1 Banked Data
	7.2.2 Register Banks
	7.2.3 Bank Control Registers

	7.3 Bank Save and Retrieve Operations
	7.3.1 Save to Bank
	7.3.2 Retrieve from Bank
	7.3.3 Save and Retrieve Operations after Saving to All Banks

	7.4 Register Bank Data Send Instructions
	7.4.1 Description of Instructions
	7.4.2 Register Bank Addressing

	7.5 Register Bank Exceptions
	7.5.1 Register Bank Error Sources
	7.5.2 Register Bank Error Exception Processing

	7.6 SR Register Bank Overflow Bit (BO Bit)

	Section 8 Pipeline Operation
	8.1 Basic Pipeline Configuration
	8.2 Slots and Pipeline Flow
	8.3 Instruction Execution and Parallel Execution Capability
	8.3.1 Details of Resource Contention
	8.3.2 Details of Contention Due to Wait for Result of Previously Issued Instruction
	8.3.3 Details of Register Contention and Flag Contention
	8.3.4 Details of Contention Due to Multi-Cycle Instruction
	8.3.5 Details of Contention Due to 32-Bit Instruction
	8.3.6 Details of Contention Due to Instruction that Uses FPSCR
	8.3.7 Details of Contention Due to Branch Instruction

	8.4 Number of Instruction Execution States
	8.5 Effect of Memory Load Instruction on Pipeline
	8.6 Contention Due to FPU
	8.7 Contention Due to Multiplier
	8.8 Programming Strategy
	8.9 Pipeline Operations for Each Instruction
	8.9.1 Data Transfer Instructions
	8.9.2 Arithmetic Operation Instructions
	8.9.3 Logical Operation Instructions
	8.9.4 Shift Instructions
	8.9.5 Branch Instructions
	8.9.6 System Control Instructions
	8.9.7 Exception Handling
	8.9.8 Floating-Point Instructions and FPU-Related CPU Instructions

	8.10 Simple Method of Calculating Required Number of Clock Cycles

	Appendix A SH-2A/SH2A-FPU Parallel Execution
	Appendix B Programming Guidelines (Using MOVI20 and MOVI20S)
	Colophon
	Address List
	Back Cover

		2008-12-13T17:08:08-0800
	ch




